An improved banded estimation for large covariance matrix

被引:3
|
作者
Yang, Wenyu [1 ]
Kang, Xiaoning [2 ,3 ]
机构
[1] Huazhong Agr Univ, Coll Sci, Wuhan, Peoples R China
[2] Dongbei Univ Finance & Econ, Int Business Coll, Dalian, Peoples R China
[3] Dongbei Univ Finance & Econ, Inst Supply Chain Analyt, Dalian, Peoples R China
基金
中国国家自然科学基金;
关键词
Banded matrix; Cholesky factor; positive definite; variable ordering;
D O I
10.1080/03610926.2021.1910839
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The modified Cholesky decomposition (MCD) is a powerful and efficient tool for the large covariance matrix estimation, which guarantees the positive definite property of the estimated matrix. However, when implementing the MCD, it requires a pre-knowledge of the variable ordering, which is often unknown before analysis or does not exist for some real data. In this work, we propose a positive definite Cholesky-based estimate for the large banded covariance matrix by recovering the variable ordering before applying the MCD technique. The asymptotically theoretical convergence rate is established under some regularity conditions. The merits of the proposed model is illustrated by simulation study and applications to two gene expression data sets.
引用
收藏
页码:141 / 155
页数:15
相关论文
共 50 条
  • [21] LARGE-SCALE SPARSE INVERSE COVARIANCE MATRIX ESTIMATION
    Bollhoefer, Matthias
    Eftekhari, Aryan
    Scheidegger, Simon
    Schenk, Olaf
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (01): : A380 - A401
  • [22] LARGE COVARIANCE MATRIX ESTIMATION: BRIDGING SHRINKAGE AND TAPERING APPROACHES
    Chen, Xiaohui
    Wang, Z. Jane
    McKeown, Martin J.
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 2013 - 2016
  • [23] Spectrum estimation: A unified framework for covariance matrix estimation and PCA in large dimensions
    Ledoit, Olivier
    Wolf, Michael
    JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 139 : 360 - 384
  • [24] Rank covariance matrix estimation of a partially known covariance matrix
    Kuljus, Kristi
    von Rosen, Dietrich
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (12) : 3667 - 3673
  • [25] Improved Covariance Matrix Estimation using Riemannian Geometry for Beamforming Applications
    Chahrour, Hossein
    Dansereau, Richard
    Rajan, Sreeraman
    Balaji, Bhashyam
    2020 IEEE INTERNATIONAL RADAR CONFERENCE (RADAR), 2020, : 693 - 697
  • [26] Bayesian hierarchical model for large-scale covariance matrix estimation
    Zhu, Dongxiao
    Hero, Alfred O., III
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2007, 14 (10) : 1311 - 1326
  • [27] SURE Information Criteria for Large Covariance Matrix Estimation and Their Asymptotic Properties
    Li, Danning
    Zou, Hui
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (04) : 2153 - 2169
  • [28] Estimation of a covariance matrix with zeros
    Chaudhuri, Sanjay
    Drton, Mathias
    Richardson, Thomas S.
    BIOMETRIKA, 2007, 94 (01) : 199 - 216
  • [29] Sparse estimation of a covariance matrix
    Bien, Jacob
    Tibshirani, Robert J.
    BIOMETRIKA, 2011, 98 (04) : 807 - 820
  • [30] Weighted covariance matrix estimation
    Yang, Guangren
    Liu, Yiming
    Pan, Guangming
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 139 : 82 - 98