An efficient medical image classification network based on multi-branch CNN, token grouping Transformer and mixer MLP

被引:17
|
作者
Liu, Shiwei [1 ]
Wang, Liejun [1 ]
Yue, Wenwen [1 ]
机构
[1] Xinjiang Univ, Sch Comp Sci & Technol, Urumqi 830017, Xinjiang, Peoples R China
基金
美国国家科学基金会;
关键词
CNN; MLP; Transformer; Medical image classification;
D O I
10.1016/j.asoc.2024.111323
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, medical image classification techniques based on deep learning have made remarkable achievements, but most of the current models sacrifice the efficiency of the model for performance improvement. This poses a great challenge in practical clinical applications. Meanwhile, Convolutional Neural Network (CNN)based methods, Visual Transformer(ViT)-based and Multi -layer Perceptron(MLP)-based methods have their own advantages and disadvantages in capturing local features and global features of medical images. And there is no good method to combine the three to achieve a better trade-off in model scale and performance. Based on the above problems, we propose Eff-CTM: an hybrid efficient medical image classification network based on multi -branch CNN, token grouping Transformer and mixer MLP. It combines the advantages of all three and takes a small number of parameters to classify pneumonia, colon cancer histopathology and dermatology images quickly and accurately. Eff-CTM uses an efficient CNN module with multi -branch structure to learn local detail information in the shallow CNN stage of the network, an efficient CNN, Transformer (ECT) module and efficient MLP (EM) module in the middle stage of the network to extract local features and global features. An efficient Transformer (ET) module is used in the final stage to fuse the rich feature information. We have conducted extensive experiments on three publicly available medical image classification datasets, and the experimental results show that our proposed Eff-CTM achieves a better trade-off in efficiency and performance than methods based on CNN, Transformer and MLP.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Multi-Branch Spectral Channel Attention Network for Breast Cancer Histopathology Image Classification
    Cao, Lu
    Pan, Ke
    Ren, Yuan
    Lu, Ruidong
    Zhang, Jianxin
    ELECTRONICS, 2024, 13 (02)
  • [22] MBSFC: hyperspectral image classification based on multi-branch and spectral feature conversion
    Tang, Ting
    Liu, Shaopeng
    Fu, Xueliang
    Yan, Weihong
    Luo, Xiaoling
    Pan, Xin
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (22) : 8202 - 8229
  • [23] Multi-Label Auroral Image Classification Based on CNN and Transformer
    Su, Hang
    Yang, Qiuju
    Ning, Yixuan
    Hu, Zejun
    Liu, Lili
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2025, 34 : 1835 - 1848
  • [24] Interactive CNN and Transformer-Based Cross-Attention Fusion Network for Medical Image Classification
    Cai, Shu
    Zhang, Qiude
    Wang, Shanshan
    Hu, Junjie
    Zeng, Liang
    Li, Kaiyan
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2025, 35 (03)
  • [25] Seizure Types Classification Based on Multi-branch Hybrid Deep Learning Network
    Jia, Qingwei
    Liu, Jin-Xing
    Shang, Junling
    Dai, Lingyun
    Wang, Yuxia
    Hu, Wenrong
    Yuan, Shasha
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT IV, ICIC 2024, 2024, 14865 : 462 - 474
  • [26] Pruning Multi-Scale Multi-Branch Network for Small-Sample Hyperspectral Image Classification
    Bai, Yu
    Xu, Meng
    Zhang, Lili
    Liu, Yuxuan
    ELECTRONICS, 2023, 12 (03)
  • [27] A Multi-branch Feature Fusion Model Based on Convolutional Neural Network for Hyperspectral Remote Sensing Image Classification
    Zhang, Jinli
    Chen, Ziqiang
    Ji, Yuanfa
    Sun, Xiyan
    Bai, Yang
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (06) : 147 - 156
  • [28] Image super-resolution network based on a multi-branch attention mechanism
    Xin Yang
    Yingqing Guo
    Zhiqiang Li
    Dake Zhou
    Signal, Image and Video Processing, 2021, 15 : 1397 - 1405
  • [29] Multi-Branch Hybrid Network Based on Adaptive Selection of Spatial-Spectral Kernel for Hyperspectral Image Classification
    Wang, Cailing
    Fu, He
    Wang, Hongwei
    IEEE ACCESS, 2023, 11 : 80503 - 80517
  • [30] Image super-resolution network based on a multi-branch attention mechanism
    Yang, Xin
    Guo, Yingqing
    Li, Zhiqiang
    Zhou, Dake
    SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (07) : 1397 - 1405