A high-throughput and low-waste viability assay for microbes

被引:10
|
作者
Meyer, Christian T. [1 ,2 ,3 ,4 ]
Lynch, Grace K. [1 ]
Stamo, Dana F. [2 ,3 ]
Miller, Eugene J. [1 ]
Chatterjee, Anushree [2 ,3 ,5 ]
Kralj, Joel M. [1 ,6 ]
机构
[1] Univ Colorado Boulder, Mol Cellular & Dev Biol, Boulder, CO 80309 USA
[2] Univ Colorado Boulder, Chem & Biol Engn, Boulder, CO 80309 USA
[3] Antimicrobial Regenerat Consortium ARC Labs, Louisville, CO 80309 USA
[4] Duet BioSyst, Nashville, CO 94404 USA
[5] Sachi Bio, Louisville, CO 80027 USA
[6] Think Biosci Inc, Boulder, CO 80309 USA
关键词
ESCHERICHIA-COLI; PSEUDOMONAS-AERUGINOSA; STATIONARY-PHASE; BACTERIA; EVOLUTION; SOS; CIPROFLOXACIN; TOLERANCE; EFFICACY; CELL;
D O I
10.1038/s41564-023-01513-9
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Counting viable cells is a universal practice in microbiology. The colony-forming unit (CFU) assay has remained the gold standard to measure viability across disciplines, but it is time-intensive and resource-consuming. Here we describe the geometric viability assay (GVA) that replicates CFU measurements over 6 orders of magnitude while reducing over 10-fold the time and consumables required. GVA computes a sample's viable cell count on the basis of the distribution of embedded colonies growing inside a pipette tip. GVA is compatible with Gram-positive and Gram-negative planktonic bacteria (Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis), biofilms and fungi (Saccharomyces cerevisiae). Laborious CFU experiments such as checkerboard assays, treatment time-courses and drug screens against slow-growing cells are simplified by GVA. The ease and low cost of GVA evinces that it can replace existing viability assays and enable viability measurements at previously impractical scales. Using agar media suspended in pipette tips and a standard camera, the geometric viability assay provides a user-friendly and scalable update to standard colony-forming-unit-count approaches.
引用
收藏
页码:2304 / +
页数:24
相关论文
共 50 条
  • [41] Low-Waste Technologies in the Metallurgical Industry
    Yu. S. Yusfin
    Metallurgist, 2002, 46 : 111 - 116
  • [42] A Low-Waste Reliable Adiabatic Platform
    Narimani, Reza
    Safaei, Bardia
    Ejlali, Alireza
    COMPUTERS & ELECTRICAL ENGINEERING, 2021, 89
  • [43] A LOW-WASTE PROCESS FOR THE PRODUCTION OF BIODIESEL
    AHN, E
    KONCAR, M
    MITTELBACH, M
    MARR, R
    SEPARATION SCIENCE AND TECHNOLOGY, 1995, 30 (7-9) : 2021 - 2033
  • [44] Low-waste technologies in the metallurgical industry
    Yusfin, YS
    METALLURGIST, 2002, 46 (3-4) : 111 - 116
  • [45] High-throughput molecular typing of microbes using the Sequenom Massarray platform
    Whiley, David
    Trembizki, Ella
    Syrmis, Melanie
    Nakos, Jenny
    Bletchly, Cheryl
    Nissen, Michael
    Nimmo, Graeme
    Sloots, Theo P.
    MICROBIOLOGY AUSTRALIA, 2013, 34 (04) : 175 - 177
  • [46] Novel Platform for High-Throughput Cell Viability Testing.
    Ngo, L. P.
    Chan, T. K.
    Ge, J.
    Samson, L. D.
    Engelward, B. P.
    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, 2017, 58 : S52 - S52
  • [47] New Device for High-Throughput Viability Screening of Flow Biofilms
    Benoit, Michael R.
    Conant, Carolyn G.
    Ionescu-Zanetti, Cristian
    Schwartz, Michael
    Matin, A.
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2010, 76 (13) : 4136 - 4142
  • [48] Growth-based Bacterial Viability (GBV) assay for interference-free and high-throughput nanotoxicity screening
    Qiu, Tian
    Thu Nguyen
    Frew, Hilena
    Hudson-Smith, Natalie
    Forester, Dona-Carla
    Clement, Peter
    Vartanian, Ariane
    Jacob, Lisa
    Hang, Mimi
    Murphy, Catherine
    Hamers, Robert
    Feng, Vivian
    Haynes, Christy
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [49] Development of a high-throughput screening assay for chemical effects on proliferation and viability of immortalized human neural progenitor cells
    Breier, Joseph M.
    Radio, Nicholas M.
    Mundy, William R.
    Shafer, Timothy J.
    TOXICOLOGICAL SCIENCES, 2008, 105 (01) : 119 - 133
  • [50] High-throughput sequential injection assay method for chlorpromazine
    Naheid, S.A., 1600, Maik Nauka Publishing / Springer SBM (68):