Solvability of a fluid-structure interaction problem with semigroup theory

被引:3
|
作者
Krier, Maxime [1 ]
Orlik, Julia [1 ]
机构
[1] Fraunhofer ITWM, Dept Flow & Mat Simulat, D-67663 Kaiserslautern, Germany
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 12期
关键词
fluid-structure interaction; asymptotic analysis; homogenization; dimension reduction; semigroup theory; LIMIT BEHAVIOR; FLOW; SIEVE;
D O I
10.3934/math.20231510
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Continuous semigroup theory is applied to proof the existence and uniqueness of a solution to a fluid-structure interaction (FSI) problem of non-stationary Stokes flow in two bulk domains, separated by a 2D elastic, permeable plate. The plate's curvature is proportional to the jump of fluid stresses across the plate and the flow resistance is modeled by Darcy's law. In the weak formulation of the considered physical problem, a linear operator in space is associated with a sum of two bilinear forms on the fluid and the interface domains, respectively. One attains a system of equations in operator form, corresponding to the weak problem formulation. Utilizing the sufficient conditions in the Lumer-Phillips theorem, we show that the linear operator is a generator of a contraction semigroup, and give the existence proof to the FSI problem.
引用
收藏
页码:29490 / 29516
页数:27
相关论文
共 50 条
  • [1] On a fluid-structure interaction problem
    Flori, F
    Orenga, P
    TRENDS IN APPLICATIONS OF MATHEMATICS TO MECHANICS, 2000, 106 : 293 - 305
  • [2] Analysis of a linear fluid-structure interaction problem
    Du, Q
    Gunzberger, MD
    Hou, LS
    Lee, J
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2003, 9 (03) : 633 - 650
  • [3] Existence for an unsteady fluid-structure interaction problem
    Grandmont, C
    Maday, Y
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (03): : 609 - 636
  • [4] Implementation of a Parallel Fluid-Structure Interaction Problem
    Ivanyi, P.
    Topping, B. H. V.
    PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED AND GRID COMPUTING FOR ENGINEERING, 2009, (90): : 653 - 682
  • [5] On a fluid-structure interaction problem for plaque growth
    Abels, Helmut
    Liu, Yadong
    NONLINEARITY, 2023, 36 (01) : 537 - 583
  • [6] An exact solution of a fluid-structure interaction problem
    Marusic-Paloka, Eduard
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2021, 101 (12):
  • [7] The Strong Stability and Instability of a Fluid-Structure Semigroup
    George Avalos
    Applied Mathematics and Optimization, 2007, 55 : 163 - 184
  • [8] Numerical analysis of a linearised fluid-structure interaction problem
    Le Tallec P.
    Mani S.
    Numerische Mathematik, 2000, 87 (2) : 317 - 354
  • [9] Extension theorems related to a fluid-structure interaction problem
    Halanay, Andrei
    Murea, Cornel Marius
    Tiba, Dan
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2018, 61 (04): : 417 - 437
  • [10] Solving a rational eigenvalue problem in fluid-structure interaction
    Voss, H
    APPLICATIONS OF HIGH-PERFORMANCE COMPUTING IN ENGINEERING VII, 2002, 7 : 179 - 188