Sharp Besov capacity estimates for annuli in metric spaces with doubling measures

被引:0
|
作者
Bjorn, Anders [1 ]
Bjorn, Jana [1 ]
机构
[1] Linkoping Univ, Dept Math, S-58183 Linkoping, Sweden
关键词
Annulus; Besov space; Condenser capacity; Doubling measure; Fractional Sobolev space; Metric space; Norm-capacity; Pointwise dimension; Uniformly perfect; Sobolev-Slobodetskii space;
D O I
10.1007/s00209-023-03360-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain precise estimates, in terms of the measure of balls, for the Besov capacity of annuli and singletons in complete metric spaces. The spaces are only assumed to be uniformly perfect with respect to the centre of the annuli and equipped with a doubling measure.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] Carleson measures for analytic Besov spaces
    Arcozzi, N
    Rochberg, R
    Sawyer, E
    REVISTA MATEMATICA IBEROAMERICANA, 2002, 18 (02) : 443 - 510
  • [32] Besov spaces and Carleson measures on the ball
    Kaptanoglu, H. Turgay
    COMPTES RENDUS MATHEMATIQUE, 2006, 343 (07) : 453 - 456
  • [33] Littlewood-Paley theory on metric spaces with non doubling measures and its applications
    ChaoQiang Tan
    Ji Li
    Science China Mathematics, 2015, 58 : 983 - 1004
  • [34] Littlewood-Paley theory on metric spaces with non doubling measures and its applications
    TAN ChaoQiang
    LI Ji
    Science China(Mathematics), 2015, 58 (05) : 983 - 1004
  • [35] Littlewood-Paley theory on metric spaces with non doubling measures and its applications
    Tan ChaoQiang
    Li Ji
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (05) : 983 - 1004
  • [36] ON ESTIMATES OF CONVOLUTIONS IN NIKOLSKII-BESOV SPACES
    BATYROV, BE
    BURENKOV, VI
    DOKLADY AKADEMII NAUK, 1993, 330 (01) : 9 - 11
  • [37] Newton–Besov spaces and Newton–Triebel–Lizorkin spaces on metric measure spaces
    Nageswari Shanmugalingam
    Dachun Yang
    Wen Yuan
    Positivity, 2015, 19 : 177 - 220
  • [38] Sharp estimates of the embedding constants for Besov spaces bp,q,s, 0 < p < 1
    Edmunds, David E.
    Evans, W. Desmond
    Karadzhov, Gyorgi E.
    REVISTA MATEMATICA COMPLUTENSE, 2007, 20 (02): : 445 - 462
  • [39] Characterizations of Besov and Triebel-Lizorkin spaces on metric measure spaces
    Gogatishvili, Amiran
    Koskela, Pekka
    Zhou, Yuan
    FORUM MATHEMATICUM, 2013, 25 (04) : 787 - 819
  • [40] Traces of Besov, Triebel-Lizorkin and Sobolev Spaces on Metric Spaces
    Saksman, Eero
    Soto, Tomas
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2017, 5 (01): : 98 - 115