MULTI-MODEL FEDERATED LEARNING OPTIMIZATION BASED ON MULTI-AGENT REINFORCEMENT LEARNING

被引:0
|
作者
Atapour, S. Kaveh [1 ]
Seyedmohammadi, S. Jamal [2 ]
Sheikholeslami, S. Mohammad [3 ]
Abouei, Jamshid [4 ]
Mohammadi, Arash [2 ]
Plataniotis, Konstantinos N. [3 ]
机构
[1] Tarbiat Modares Univ, Dept Comp & Elect Engn, Tehran, Iran
[2] Concordia Inst Informat Syst Engn CIISE, Montreal, PQ, Canada
[3] Univ Toronto, Edward S Rogers Sr Dept Elect Comp Engn, Toronto, ON, Canada
[4] Yazd Univ, Dept Elect Engn, Yazd, Iran
关键词
Muti-Model Federated Learning; MDP; Reinforcement Learning; Team-Q algorithm; Cooperative Multi-Agents; MODEL;
D O I
10.1109/CAMSAP58249.2023.10403421
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper addresses the problem of Multi-Model Federated Learning (MMFL) in a typical wireless network, where a cellular Base Station (BS) cooperates with multiple clients to simultaneously train several Machine Learning (ML) models. Accordingly, the objective of this paper is to make an efficient joint decision for client association and communication-computation resource allocation to optimize the performance of the MMFL algorithm. In this regard, an optimization problem is formulated to minimize the average global loss of ML models under clients' energy and delay constraints. It is shown that the problem is a mixed-integer optimization whose objective is implicit in terms of the decision variables. To solve the optimization problem, we propose a Multi-Agent Multi-Model Federated Learning (MAMMFL) scheme based on a cooperative multi-agent configuration to intelligently assign models and resources to clients. Specifically, the problem is first converted to a Markov Decision Process (MDP) problem, then it is divided into four sub-MDP problems, where each problem relates to a phase in MMFL. The reinforcement learning algorithm solves each subproblem, and a team-Q algorithm is adopted to coordinate agents in a cooperative multi-agent setting. Simulation results show that the proposed method can outperform other baselines in terms of average global loss and resource consumption.
引用
收藏
页码:151 / 155
页数:5
相关论文
共 50 条
  • [21] Robust Multi-Agent Reinforcement Learning with Model Uncertainty
    Zhang, Kaiqing
    Sun, Tao
    Tao, Yunzhe
    Genc, Sahika
    Mallya, Sunil
    Basar, Tamer
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [22] A multi-agent federated reinforcement learning-based optimization of quality of service in various LoRa network slices
    Ossongo, Eric
    Esseghir, Moez
    Merghem-Boulahia, Leila
    Computer Communications, 2024, 213 : 320 - 330
  • [23] A multi-agent federated reinforcement learning-based optimization of quality of service in various LoRa network slices
    Ossongo, Eric
    Esseghir, Moez
    Merghem-Boulahia, Leila
    COMPUTER COMMUNICATIONS, 2024, 213 : 320 - 330
  • [24] Multi-agent reinforcement learning with approximate model learning for competitive games
    Park, Young Joon
    Cho, Yoon Sang
    Kim, Seoung Bum
    PLOS ONE, 2019, 14 (09):
  • [25] Hierarchical multi-agent reinforcement learning
    Mohammad Ghavamzadeh
    Sridhar Mahadevan
    Rajbala Makar
    Autonomous Agents and Multi-Agent Systems, 2006, 13 : 197 - 229
  • [26] Filtered Observations for Model-Based Multi-agent Reinforcement Learning
    Meng, Linghui
    Xiong, Xuantang
    Zang, Yifan
    Zhang, Xi
    Li, Guoqi
    Xing, Dengpeng
    Xu, Bo
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT IV, 2023, 14172 : 540 - 555
  • [27] The Dynamics of Multi-Agent Reinforcement Learning
    Dickens, Luke
    Broda, Krysia
    Russo, Alessandra
    ECAI 2010 - 19TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2010, 215 : 367 - 372
  • [28] Multi-Agent Reinforcement Learning for Microgrids
    Dimeas, A. L.
    Hatziargyriou, N. D.
    IEEE POWER AND ENERGY SOCIETY GENERAL MEETING 2010, 2010,
  • [29] Multi-agent Exploration with Reinforcement Learning
    Sygkounas, Alkis
    Tsipianitis, Dimitris
    Nikolakopoulos, George
    Bechlioulis, Charalampos P.
    2022 30TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2022, : 630 - 635
  • [30] Hierarchical multi-agent reinforcement learning
    Ghavamzadeh, Mohammad
    Mahadevan, Sridhar
    Makar, Rajbala
    AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2006, 13 (02) : 197 - 229