Automorphic products that are singular modulo primes

被引:0
|
作者
Wang, Haowu [1 ]
Williams, Brandon [2 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
[2] Rhein Westfal TH Aachen, Lehrstuhl Math A, D-52056 Aachen, Germany
关键词
THETA OPERATOR; P KERNEL; FORMS; ALGEBRAS;
D O I
10.1007/s40993-023-00495-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use Rankin-Cohen brackets on O(n, 2) to prove that the Fourier coefficients of reflective Borcherds products often satisfy congruences modulo certain primes.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Congruences of multipartition functions modulo powers of primes
    Chen, William Y. C.
    Du, Daniel K.
    Hou, Qing-Hu
    Sun, Lisa H.
    RAMANUJAN JOURNAL, 2014, 35 (01): : 1 - 19
  • [42] The Residue of p(N) Modulo Small Primes
    Ken Ono
    The Ramanujan Journal, 1998, 2 : 47 - 54
  • [43] Stability modulo singular sets
    Iglesias, J.
    Portela, A.
    Rovella, A.
    FUNDAMENTA MATHEMATICAE, 2009, 204 (02) : 155 - 175
  • [44] Cyclicity of elliptic curves modulo primes in arithmetic progressions
    Akbal, Yildirim
    Guloglu, Ahmet M.
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2022, 74 (05): : 1277 - 1309
  • [45] G-SETS AND LINEAR RECURRENCES MODULO PRIMES
    McKenzie, Thomas
    Overbay, Shannon
    Ray, Robert
    MISSOURI JOURNAL OF MATHEMATICAL SCIENCES, 2013, 25 (01) : 27 - 36
  • [46] Almost Uniform Distribution Modulo 1 and the Distribution of Primes
    S. Akiyama
    Acta Mathematica Hungarica, 1998, 78 : 39 - 44
  • [47] Questions about the reductions modulo primes of anelliptic curve
    Cojocaru, AC
    NUMBER THEORY, 2004, 36 : 61 - 79
  • [48] Lacunary eta-quotients modulo powers of primes
    Tessa Cotron
    Anya Michaelsen
    Emily Stamm
    Weitao Zhu
    The Ramanujan Journal, 2020, 53 : 269 - 284
  • [49] Almost uniform distribution modulo 1 and the distribution of primes
    Akiyama, S
    ACTA MATHEMATICA HUNGARICA, 1998, 78 (1-2) : 39 - 44
  • [50] On the solution set of additive and multiplicative congruences modulo primes
    Cai, Tianxin
    Shen, Zhongyan
    Yang, Peng
    FILOMAT, 2024, 38 (02) : 621 - 635