Automorphic products that are singular modulo primes

被引:0
|
作者
Wang, Haowu [1 ]
Williams, Brandon [2 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
[2] Rhein Westfal TH Aachen, Lehrstuhl Math A, D-52056 Aachen, Germany
关键词
THETA OPERATOR; P KERNEL; FORMS; ALGEBRAS;
D O I
10.1007/s40993-023-00495-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use Rankin-Cohen brackets on O(n, 2) to prove that the Fourier coefficients of reflective Borcherds products often satisfy congruences modulo certain primes.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Automorphic products that are singular modulo primes
    Haowu Wang
    Brandon Williams
    Research in Number Theory, 2024, 10
  • [2] Polynomial products modulo primes and applications
    Klurman, Oleksiy
    Munsch, Marc
    MONATSHEFTE FUR MATHEMATIK, 2020, 191 (03): : 577 - 593
  • [3] Polynomial products modulo primes and applications
    Oleksiy Klurman
    Marc Munsch
    Monatshefte für Mathematik, 2020, 191 : 577 - 593
  • [4] Automorphic products of singular weight
    Scheithauer, Nils R.
    COMPOSITIO MATHEMATICA, 2017, 153 (09) : 1855 - 1892
  • [5] Automorphic products of singular weight for simple lattices
    Dittmann, Moritz
    Hagemeier, Heike
    Schwagenscheidt, Markus
    MATHEMATISCHE ZEITSCHRIFT, 2015, 279 (1-2) : 585 - 603
  • [6] Automorphic products of singular weight for simple lattices
    Moritz Dittmann
    Heike Hagemeier
    Markus Schwagenscheidt
    Mathematische Zeitschrift, 2015, 279 : 585 - 603
  • [7] SUBORDER POLYNOMIALS MODULO PRIMES
    Lehman, J. Larry
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2013, 28 (01): : 45 - 80
  • [8] Periods of orbits modulo primes
    Akbary, Amir
    Ghioca, Dragos
    JOURNAL OF NUMBER THEORY, 2009, 129 (11) : 2831 - 2842
  • [9] Some Congruences Modulo Primes
    Winfried Kohnen
    Monatshefte für Mathematik, 1999, 127 : 321 - 324
  • [10] PRIMES IN PROGRESSIONS MODULO PR
    GALLAGHE.PX
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (06): : 926 - &