A fully automatic method for segmentation of soccer playing fields

被引:0
|
作者
Cuevas, Carlos [1 ]
Berjon, Daniel [1 ]
Garcia, Narciso [1 ]
机构
[1] Univ Politecn Madrid, Informat Proc & Telecommun Ctr IPTC, Grp Tratamiento Imagenes GTI, Madrid 28040, Spain
关键词
BACKGROUND SUBTRACTION; TRACKING; ALGORITHM; PLAYERS;
D O I
10.1038/s41598-023-28658-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper proposes a strategy to segment the playing field in soccer images, suitable for integration in many soccer image analysis applications. The combination of a green chromaticity-based analysis and an analysis of the chromatic distortion using full-color information, both at the pixel-level, allows segmenting the green areas of the images. Then, a fully automatic post-processing block at the region-level discards the green areas that do not belong to the playing field. The strategy has been evaluated with hundreds of annotated images from matches in several stadiums with different grass shades and light conditions. The results obtained have been of great quality in all the images, even in those with the most complex lighting conditions (e.g., high contrast between sunlit and shadowed areas). In addition, these results have improved those obtained with leading state-of-the-art playing field segmentation strategies.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Towards fully automatic object detection and segmentation
    Schramm, Hauke
    Ecabert, Olivier
    Peters, Jochen
    Philomin, Vasanth
    Weese, Juergen
    MEDICAL IMAGING 2006: IMAGE PROCESSING, PTS 1-3, 2006, 6144
  • [22] Fully automatic segmentation of bee wing images
    Garcia Fagundes, Joao Marcos
    Rebelo, Allan Rodrigues
    Digiampietri, Luciano Antonio
    Biscaro, Helton Hideraldo
    REVISTA BRASILEIRA DE COMPUTACAO APLICADA, 2020, 12 (02): : 37 - 45
  • [23] Towards Fully Automatic Image Segmentation Evaluation
    Goldmann, Lutz
    Adamek, Tomasz
    Vajda, Peter
    Karaman, Mustafa
    Moerzinger, Roland
    Galmar, Eric
    Sikora, Thomas
    O'Connor, Noel E.
    Ha-Minh, Thien
    Ebrahimi, Touradj
    Schallauer, Peter
    Huet, Benoit
    ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS, PROCEEDINGS, 2008, 5259 : 566 - +
  • [24] Fully Automatic Segmentation and Measurement of the Fetal Femur
    Colin Garnica, Daniel
    Perez-Gonzalez, Jorge
    Prieto Rodriguez, Scarlet
    Camargo Marin, Lisbeth
    Guzman Huerta, Mario
    Delia Javier, Alma
    Valdes Cristerna, Raquel
    Medina-Banuelos, Veronica
    14TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION PROCESSING AND ANALYSIS, 2018, 10975
  • [25] Fully Automatic Segmentation for Prosodic Speech Corpora
    Hoffmann, Sarah
    Pfister, Beat
    11TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2010 (INTERSPEECH 2010), VOLS 1-2, 2010, : 1389 - 1392
  • [26] Fully Automatic AI Segmentation of Subcortical Regions
    Weatheritt, Jack
    Joules, Richard
    Wolz, Robin
    Rueckert, Daniel
    NEUROTHERAPEUTICS, 2020, 17 (SUPPL 1) : 21 - 21
  • [27] Fully automatic person segmentation in unconstrained video using spatio-temporal conditional random fields
    Bhole, Chetan
    Pal, Christopher
    IMAGE AND VISION COMPUTING, 2016, 51 : 58 - 68
  • [28] Clinical Evaluation of a Fully-automatic Segmentation Method for Longitudinal Brain Tumor Volumetry
    Meier, Raphael
    Knecht, Urspeter
    Loosli, Tina
    Bauer, Stefan
    Slotboom, Johannes
    Wiest, Roland
    Reyes, Mauricio
    SCIENTIFIC REPORTS, 2016, 6
  • [29] A robust fully automatic lumen segmentation method for in vivo intracoronary optical coherence tomography
    de Macedo M.M.G.
    Takimura C.K.
    Lemos P.A.
    Gutierrez M.A.
    2016, Brazilian Society of Biomedical Engineering (32) : 35 - 43
  • [30] Clinical Evaluation of a Fully-automatic Segmentation Method for Longitudinal Brain Tumor Volumetry
    Raphael Meier
    Urspeter Knecht
    Tina Loosli
    Stefan Bauer
    Johannes Slotboom
    Roland Wiest
    Mauricio Reyes
    Scientific Reports, 6