Deep-learning-based methods for super-resolution fluorescence microscopy

被引:11
|
作者
Liao, Jianhui [1 ]
Qu, Junle [1 ]
Hao, Yongqi [2 ]
Li, Jia [1 ]
机构
[1] Shenzhen Univ, Coll Phys & Optoelect Engn, Shenzhen Key Lab Photon & Biophoton, Key Lab Optoelect Devices & Syst,Minist Educ & Gua, Shenzhen 518060, Peoples R China
[2] NARI Technol Co Ltd, NARI Grp Corp, State Grid Elect Power Res Inst, Nanjing 211106, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Super-resolution fluorescence microscopy; deep learning; convolutional neural network; generative adversarial network; image reconstruction; RESOLUTION LIMIT; LOCALIZATION; RECONSTRUCTION; MOLECULES; NETWORKS;
D O I
10.1142/S1793545822300166
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The algorithm used for reconstruction or resolution enhancement is one of the factors affecting the quality of super-resolution images obtained by fluorescence microscopy. Deep-learning-based algorithms have achieved state-of-the-art performance in super-resolution fluorescence microscopy and are becoming increasingly attractive. We firstly introduce commonly-used deep learning models, and then review the latest applications in terms of the network architectures, the training data and the loss functions. Additionally, we discuss the challenges and limits when using deep learning to analyze the fluorescence microscopic data, and suggest ways to improve the reliability and robustness of deep learning applications.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] A guide to super-resolution fluorescence microscopy
    Schermelleh, Lothar
    Heintzmann, Rainer
    Leonhardt, Heinrich
    JOURNAL OF CELL BIOLOGY, 2010, 190 (02): : 165 - 175
  • [22] Super-resolution fluorescence polarization microscopy
    Zhanghao, Karl
    Gao, Juntao
    Jin, Dayong
    Zhang, Xuedian
    Xi, Peng
    JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES, 2018, 11 (01)
  • [23] Fast Super-Resolution Fluorescence Microscopy Imaging with Low Signal-to-Noise Ratio Based on Deep Learning
    Xiao Kang
    Tian Lijun
    Wang Zhongyang
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2020, 47 (10):
  • [24] Fast Super-Resolution Fluorescence Microscopy Imaging with Low Signal-to-Noise Ratio Based on Deep Learning
    Xiao K.
    Tian L.
    Wang Z.
    Zhongguo Jiguang/Chinese Journal of Lasers, 2020, 47 (10):
  • [25] Deep learning enables reference-free isotropic super-resolution for volumetric fluorescence microscopy
    Park, Hyoungjun
    Na, Myeongsu
    Kim, Bumju
    Park, Soohyun
    Kim, Ki Hean
    Chang, Sunghoe
    Ye, Jong Chul
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [26] DLBI: deep learning guided Bayesian inference for structure reconstruction of super-resolution fluorescence microscopy
    Li, Yu
    Xu, Fan
    Zhang, Fa
    Xu, Pingyong
    Zhang, Mingshu
    Fan, Ming
    Li, Lihua
    Gao, Xin
    Han, Renmin
    BIOINFORMATICS, 2018, 34 (13) : 284 - 294
  • [27] Deep learning enables reference-free isotropic super-resolution for volumetric fluorescence microscopy
    Hyoungjun Park
    Myeongsu Na
    Bumju Kim
    Soohyun Park
    Ki Hean Kim
    Sunghoe Chang
    Jong Chul Ye
    Nature Communications, 13
  • [28] Joint Denoising and Super-Resolution for Fluorescence Microscopy Using Weakly-Supervised Deep Learning
    Tsang, Colin S. C.
    Mok, Tony C. W.
    Chung, Albert C. S.
    MEDICAL OPTICAL IMAGING AND VIRTUAL MICROSCOPY IMAGE ANALYSIS, MOVI 2022, 2022, 13578 : 32 - 41
  • [29] Deep learning massively accelerates super-resolution localization microscopy
    Wei Ouyang
    Andrey Aristov
    Mickaël Lelek
    Xian Hao
    Christophe Zimmer
    Nature Biotechnology, 2018, 36 : 460 - 468
  • [30] Deep learning massively accelerates super-resolution localization microscopy
    Ouyang, Wei
    Aristov, Andrey
    Lelek, Mickael
    Hao, Xian
    Zimmer, Christophe
    NATURE BIOTECHNOLOGY, 2018, 36 (05) : 460 - +