Exploiting Organometallic Chemistry to Functionalize Small Cuprous Oxide Colloidal Nanocrystals

被引:3
|
作者
Cowie, Bradley E. [1 ]
Mears, Kristian L. [1 ]
S'ari, Mark [2 ]
Lee, Ja Kyung [2 ]
Briceno de Gutierrez, Martha [2 ]
Kalha, Curran [3 ]
Regoutz, Anna [3 ]
Shaffer, Milo S. P. [4 ,5 ]
Williams, Charlotte K. [1 ]
机构
[1] Univ Oxford, Dept Chem, Chem Res Lab, Oxford OX1 3TA, England
[2] Johnson Matthey, Reading RG4 9NH, England
[3] UCL, Dept Chem, London WC1H 0AJ, England
[4] Imperial Coll London, Dept Mat, London SW7 2AZ, England
[5] Imperial Coll London, Dept Chem, London W12 0BZ, England
基金
英国工程与自然科学研究理事会;
关键词
RAY PHOTOELECTRON-SPECTROSCOPY; CARBON-DIOXIDE; SOLAR-CELLS; SURFACE; CU2O; HYDROGENATION; BINDING; COPPER; CARBOXYLATE; CATALYSTS;
D O I
10.1021/jacs.3c10892
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The ligand chemistry of colloidal semiconductor nanocrystals mediates their solubility, band gap, and surface facets. Here, selective organometallic chemistry is used to prepare small, colloidal cuprous oxide nanocrystals and to control their surface chemistry by decorating them with metal complexes. The strategy is demonstrated using small (3-6 nm) cuprous oxide (Cu2O) colloidal nanocrystals (NC), soluble in organic solvents. Organometallic complexes are coordinated by reacting the surface Cu-OH bonds with organometallic reagents, M(C6F5)(2), M = Zn(II) and Co(II), at room temperature. These reactions do not disrupt the Cu2O crystallinity or nanoparticle size; rather, they allow for the selective coordination of a specific metal complex at the surface. Subsequently, the surface-coordinated organometallic complex is reacted with three different carboxylic acids to deliver Cu-O-Zn(O2CR') complexes. Selective nanocrystal surface functionalization is established using spectroscopy (IR, F-19 NMR), thermal gravimetric analyses (TGA), transmission electron microscopy (TEM, EELS), and X-ray photoelectron spectroscopy (XPS). Photoluminescence efficiency increases dramatically upon organometallic surface functionalization relative to that of the parent Cu2O NC, with the effect being most pronounced for Zn(II) decoration. The nanocrystal surfaces are selectively functionalized by both organic ligands and well-defined organometallic complexes; this synthetic strategy may be applicable to many other metal oxides, hydroxides, and semiconductors. In the future, it should allow NC properties to be designed for applications including catalysis, sensing, electronics, and quantum technologies.
引用
收藏
页码:3816 / 3824
页数:9
相关论文
共 50 条
  • [21] Optimization of cuprous oxide nanocrystals deposition on multiwalled carbon nanotubes
    Praveen Martis
    Antonio Fonseca
    Zineb Mekhalif
    Joseph Delhalle
    Journal of Nanoparticle Research, 2010, 12 : 439 - 448
  • [22] Optimization of cuprous oxide nanocrystals deposition on multiwalled carbon nanotubes
    Martis, Praveen
    Fonseca, Antonio
    Mekhalif, Zineb
    Delhalle, Joseph
    JOURNAL OF NANOPARTICLE RESEARCH, 2010, 12 (02) : 439 - 448
  • [23] A new insight into the fabrication of colloidal isotropic ZnO nanocrystals by an organometallic approach
    Wojewodzka, Anna
    Wolska-Pietkiewicz, Malgorzata
    Szczepanowski, Roman H.
    Jedrzejewska, Maria
    Zelga, Karolina
    Lewinski, Janusz
    NANOSCALE ADVANCES, 2025,
  • [24] Colloidal synthesis of lead oxide nanocrystals for photovoltaics
    Cattley, Christopher A.
    Stavrinadis, Alexandros
    Beal, Richard
    Moghal, Jonathan
    Cook, Andrew G.
    Grant, Patrick S.
    Smith, Jason M.
    Assender, Hazel
    Watt, Andrew A. R.
    CHEMICAL COMMUNICATIONS, 2010, 46 (16) : 2802 - 2804
  • [25] Green chemistry synthesis of nano-cuprous oxide
    Ceja-Romero, L. R.
    Ortega-Arroyo, L.
    Ortega Rueda de Leon, J. M.
    Lopez-Andrade, X.
    Narayanan, J.
    Aguilar-Mendez, M. A.
    Castano, V. M.
    IET NANOBIOTECHNOLOGY, 2016, 10 (02) : 39 - 44
  • [26] Surface chemistry of colloidal lead halide perovskite nanocrystals
    Kovalenko, Maksym
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [27] Semiconductor nanocrystals obtained by colloidal chemistry for biological applications
    Santos, B. S.
    Farias, P. M. A.
    Fontes, A.
    Brasil, A. G., Jr.
    Jovino, C. N.
    Neto, A. G. C.
    Silva, D. C. N.
    de Menezes, F. D.
    Ferreira, R.
    APPLIED SURFACE SCIENCE, 2008, 255 (03) : 796 - 798
  • [28] The Surface Chemistry of Colloidal Nanocrystals Capped by Organic Ligands
    De Roo, Jonathan
    CHEMISTRY OF MATERIALS, 2023, 35 (10) : 3781 - 3792
  • [29] Bismuth Doping of Germanium Nanocrystals through Colloidal Chemistry
    Tabatabaei, Katayoun
    Lu, Haipeng
    Nolan, Bradley M.
    Cen, Xi
    McCold, Cliff E.
    Zhang, Xinming
    Brutchey, Richard L.
    van Benthem, Klaus
    Hihath, Joshua
    Kauzlarich, Susan M.
    CHEMISTRY OF MATERIALS, 2017, 29 (17) : 7353 - 7363
  • [30] Hydroxyapatite nanocrystals: colloidal chemistry, assembly and their biological applications
    Hui, Junfeng
    Wang, Xun
    INORGANIC CHEMISTRY FRONTIERS, 2014, 1 (03): : 215 - 225