Machine Learning Identifies Metabolic Dysfunction-Associated Steatotic Liver Disease in Patients With Diabetes Mellitus

被引:3
|
作者
Nabrdalik, Katarzyna [1 ,2 ,3 ,8 ]
Kwiendacz, Hanna [1 ]
Irlik, Krzysztof [2 ,3 ,4 ]
Hendel, Mirela [4 ]
Drozdz, Karolina [1 ]
Wijata, Agata M. [2 ,3 ,5 ]
Nalepa, Jakub [2 ,3 ,6 ]
Janota, Oliwia [1 ]
Wojcik, Wiktoria [4 ]
Gumprecht, Janusz [1 ]
Lip, Gregory Y. H. [2 ,3 ,7 ]
机构
[1] Med Univ Silesia, Fac Med Sci Zabrze, Dept Internal Med Diabetol & Nephrol, PL-40155 Katowice, Poland
[2] Liverpool John Moores Univ, Univ Liverpool, Liverpool Ctr Cardiovasc Sci, Liverpool L69 3BX, Merseyside, England
[3] Liverpool Heart & Chest Hosp, Liverpool L69 3BX, England
[4] Med Univ Silesia, Fac Med Sci Zabrze, Students Sci Assoc, Dept Internal Med Diabetol & Nephrol, PL-40055 Katowice, Poland
[5] Silesian Tech Univ, Fac Biomed Engn, PL-41800 Zabrze, Poland
[6] Silesian Tech Univ, Dept Algorithm & Software, PL-44100 Gliwice, Poland
[7] Aalborg Univ, Danish Ctr Hlth Serv Res, Dept Clin Med, DK-9220 Aalborg, Denmark
[8] Med Univ Silesia, Dept Internal Med Diabetol & Nephrol, PL-40055 Katowice, Poland
来源
关键词
diabetes; metabolic dysfunction-associated steatotic liver disease; machine learning; risk prediction; CARDIOVASCULAR-DISEASE; PLATELET COUNT; RISK; PREVALENCE; FIBROSIS; INDEX;
D O I
10.1210/clinem/dgae060
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Context The presence of metabolic dysfunction-associated steatotic liver disease (MASLD) in patients with diabetes mellitus (DM) is associated with a high risk of cardiovascular disease, but is often underdiagnosed.Objective To develop machine learning (ML) models for risk assessment of MASLD occurrence in patients with DM.Methods Feature selection determined the discriminative parameters, utilized to classify DM patients as those with and without MASLD. The performance of the multiple logistic regression model was quantified by sensitivity, specificity, and percentage of correctly classified patients, and receiver operating characteristic (ROC) curve analysis. Decision curve analysis (DCA) assessed the model's net benefit for alternative treatments.Results We studied 2000 patients with DM (mean age 58.85 +/- 17.37 years; 48% women). Eight parameters: age, body mass index, type of DM, alanine aminotransferase, aspartate aminotransferase, platelet count, hyperuricaemia, and treatment with metformin were identified as discriminative. The experiments for 1735 patients show that 744/991 (75.08%) and 586/744 (78.76%) patients with/without MASLD were correctly identified (sensitivity/specificity: 0.75/0.79). The area under ROC (AUC) was 0.84 (95% CI, 0.82-0.86), while DCA showed a higher clinical utility of the model, ranging from 30% to 84% threshold probability. Results for 265 test patients confirm the model's generalizability (sensitivity/specificity: 0.80/0.74; AUC: 0.81 [95% CI, 0.76-0.87]), whereas unsupervised clustering identified high-risk patients.Conclusion A ML approach demonstrated high performance in identifying MASLD in patients with DM. This approach may facilitate better risk stratification and cardiovascular risk prevention strategies for high-risk patients with DM at risk of MASLD.
引用
收藏
页码:2029 / 2038
页数:10
相关论文
共 50 条
  • [21] Editorial: Using machine learning to predict significant fibrosis in metabolic dysfunction-associated steatotic liver disease
    Manikat, Richie
    Ahmed, Aijaz
    Kim, Donghee
    ALIMENTARY PHARMACOLOGY & THERAPEUTICS, 2024, 59 (07) : 893 - 895
  • [22] DEVELOPMENT OF A MACHINE LEARNING MODEL TO PREDICT PROGRESSION OF FIBROSIS IN METABOLIC DYSFUNCTION-ASSOCIATED STEATOTIC LIVER DISEASE
    Yang, Jamie
    Kamrava, Mitchell
    Peters, Kirstin
    Valle, Nicholas
    Dong, Tien
    HEPATOLOGY, 2024, 80 : S627 - S627
  • [23] ENHANCING TRADITIONAL FIBROSIS PREDICTION MODELS WITH MACHINE LEARNING IN PATIENTS WITH METABOLIC DYSFUNCTION-ASSOCIATED STEATOTIC LIVER DISEASE (MASLD)
    Kim, David
    Qureshi, Imran
    Ismail, Mohamed
    Abboud, Yazan
    Pyrsopoulos, Nikolaos
    Kim, Hyunseok
    Hajifathalian, Kaveh
    Al-Khazraji, Ahmed
    HEPATOLOGY, 2024, 80 : S587 - S588
  • [24] Metabolic dysfunction-associated steatotic liver disease-associated fibrosis and cardiac dysfunction in patients with type 2 diabetes
    Cernea, Simona
    Onisor, Danusia
    Roiban, Andrada Larisa
    Benedek, Theodora
    Rat, Nora
    WORLD JOURNAL OF CARDIOLOGY, 2024, 16 (10):
  • [25] Postpartum development of metabolic dysfunction-associated steatotic liver disease in a lean mouse model of gestational diabetes mellitus
    Hribar, K.
    Eichhorn, D.
    Bongiovanni, L.
    Koster, M. H.
    Kloosterhuis, N. J.
    de Bruin, A.
    Oosterveer, M. H.
    Kruit, J. K.
    van der Beek, E. M.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [26] Pharmacological treatment options for metabolic dysfunction-associated steatotic liver disease in patients with type 2 diabetes mellitus: A systematic review
    Konings, Laura A. M.
    Miguelanez-Matute, Lorena
    Boeren, Anna M. P.
    van de Luitgaarden, Inge A. T.
    Dirksmeier, Femme
    de Knegt, Rob J.
    Tushuizen, Maarten E.
    Grobbee, Diederick E.
    Holleboom, Adriaan G.
    Cabezas, Manuel Castro
    EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, 2025, 55 (04)
  • [27] Metabolic signatures of metabolic dysfunction-associated steatotic liver disease in severely obese patients
    Babu, Ambrin Farizah
    Palomurto, Saana
    Karja, Vesa
    Kakela, Pirjo
    Lehtonen, Marko
    Hanhineva, Kati
    Pihlajamaki, Jussi
    Mannisto, Ville
    DIGESTIVE AND LIVER DISEASE, 2024, 56 (12) : 2103 - 2110
  • [28] Efficacy of imeglimin in patients with type 2 diabetes mellitus complicated by metabolic dysfunction-associated steatotic liver disease: A multicentre study
    Fukunaga, Kensaku
    Morishita, Asahiro
    Imachi, Hitomi
    Oura, Kyoko
    Sato, Seisuke
    Kobayashi, Toshihiro
    Saheki, Takanobu
    Yoshimura, Takafumi
    Komori, Kurumi
    Nakahara, Mai
    Tadokoro, Tomoko
    Fujita, Koji
    Tani, Joji
    Kobara, Hideki
    Murao, Koji
    DIABETES OBESITY & METABOLISM, 2025, 27 (03): : 1498 - 1506
  • [29] Cardiovascular Risk Reduction in Metabolic Dysfunction-Associated Steatotic Liver Disease and Metabolic Dysfunction-Associated Steatohepatitis
    Bernhard, Johannes
    Galli, Lukas
    Speidl, Walter S.
    Krychtiuk, Konstantin A.
    CURRENT CARDIOLOGY REPORTS, 2025, 27 (01)
  • [30] Metabolic Dysfunction-Associated Steatotic Liver Disease and Metabolic Dysfunction-Associated Steatohepatitis: The Patient and Physician Perspective
    Eskridge, Wayne
    Cryer, Donna R.
    Schattenberg, Joern M.
    Gastaldelli, Amalia
    Malhi, Harmeet
    Allen, Alina M.
    Noureddin, Mazen
    Sanyal, Arun J.
    JOURNAL OF CLINICAL MEDICINE, 2023, 12 (19)