Low-degree spline quasi-interpolants in the Bernstein basis

被引:4
|
作者
Barrera, D. [1 ]
Eddargani, S. [2 ]
Ibanez, M. J. [1 ]
Remogna, S. [3 ]
机构
[1] Univ Granada, Dept Appl Math, Campus Fuentenueva S-N, Granada 18071, Spain
[2] Univ Roma Tor Vergata, Dept Math, Rome, Italy
[3] Univ Torino, Dept Math, Via C Alberto 10, I-10123 Turin, Italy
关键词
Quasi-interpolation; Bernstein basis; Bezier-ordinates;
D O I
10.1016/j.amc.2023.128150
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we propose the construction of univariate low-degree quasi-interpolating splines in the Bernstein basis, considering C 1 and C 2 smoothness, specific polynomial re-production properties and different sets of evaluation points. The splines are directly de-termined by setting their Bernstein-Bezier coefficients to appropriate combinations of the given data values. Moreover, we get quasi-interpolating splines with special properties, im-posing particular requirements in case of free parameters. Finally, we provide numerical tests showing the performances of the proposed methods. & COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:18
相关论文
共 50 条