Data-driven abstractions via adaptive refinements and a Kantorovich metric

被引:1
|
作者
Banse, Adrien [1 ]
Romao, Licio [2 ]
Abate, Alessandro [2 ]
Jungers, Raphael M. [1 ]
机构
[1] UCLouvain, ICTEAM, Louvain, Belgium
[2] Univ Oxford, Dept Comp Sci, Oxford, England
基金
欧洲研究理事会;
关键词
DYNAMICAL-SYSTEMS; MARKOV; WASSERSTEIN;
D O I
10.1109/CDC49753.2023.10383513
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce an adaptive refinement procedure for smart and scalable abstraction of dynamical systems. Our technique relies on partitioning the state space depending on the observation of future outputs. However, this knowledge is dynamically constructed in an adaptive, asymmetric way. In order to learn the optimal structure, we define a Kantorovich-inspired metric between Markov chains, and we use it to guide the state partition refinement. Our technique is prone to datadriven frameworks, but not restricted to. We also study properties of the above mentioned metric between Markov chains, which we believe could be of broader interest. We propose an algorithm to approximate it, and we show that our method yields a much better computational complexity than using classical linear programming techniques.
引用
收藏
页码:6038 / 6043
页数:6
相关论文
共 50 条
  • [21] Data-driven metric representing the maturation of preterm EEG
    Koolen, Ninah
    Dereymaeker, Anneleen
    Rasanen, Okko
    Jansen, Katrien
    Vervisch, Jan
    Matic, Vladimir
    De Vos, Maarten
    Naulaers, Gunnar
    Van Huffel, Sabine
    Vanhatalo, Sampsa
    2015 37TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2015, : 1492 - 1495
  • [22] Data-Driven Network Connectivity Analysis: An Underestimated Metric
    Xu, Junxiang
    Nair, Divya Jayakumar
    IEEE ACCESS, 2024, 12 : 60908 - 60927
  • [23] A novel data-driven leak detection and localization algorithm using the Kantorovich distance
    Arifin, B. M. S.
    Li, Zukui
    Shah, Sirish L.
    Meyer, Gordon A.
    Colin, Amanda
    COMPUTERS & CHEMICAL ENGINEERING, 2018, 108 : 300 - 313
  • [24] Data-Driven Adaptive Optima Control of UAV
    Du, Shuai
    Wang, Xiaoli
    Li, Zean
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 2312 - 2317
  • [25] Data-driven Adaptive Robust Control of a CSTR
    Nabati, Ehsan Gholamzadeh
    Engell, Sebastian
    2012 16TH IEEE MEDITERRANEAN ELECTROTECHNICAL CONFERENCE (MELECON), 2012, : 946 - 949
  • [26] Data-driven Adaptive History for Image Editing
    Chen, Hsiang-Ting
    Wei, Li-Yi
    Hartmann, Bjorn
    Agrawala, Maneesh
    PROCEEDINGS I3D 2016: 20TH ACM SIGGRAPH SYMPOSIUM ON INTERACTIVE 3D GRAPHICS AND GAMES, 2016, : 103 - 111
  • [27] Interactive and Adaptive Data-Driven Crowd Simulation
    Kim, Sujeong
    Bera, Aniket
    Best, Andrew
    Chabra, Rohan
    Manocha, Dinesh
    2016 IEEE VIRTUAL REALITY CONFERENCE (VR), 2016, : 29 - 38
  • [28] Data-Driven Adaptive Regularized Risk Forecasting
    Liang, You
    Thavaneswaran, Aerambamoorthy
    Zhu, Zimo
    Thulasiram, Ruppa K.
    Hoque, Md Erfanul
    2020 IEEE 44TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2020), 2020, : 1296 - 1301
  • [29] Data-Driven Adaptive Observer for Fault Diagnosis
    Yin, Shen
    Yang, Xuebo
    Karimi, Hamid Reza
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2012, 2012
  • [30] Adaptive Robust Data-Driven Building Control via Bilevel Reformulation: An Experimental Result
    Lian, Yingzhao
    Shi, Jicheng
    Koch, Manuel
    Jones, Colin Neil
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2023, 31 (06) : 2420 - 2436