Data-driven abstractions via adaptive refinements and a Kantorovich metric

被引:1
|
作者
Banse, Adrien [1 ]
Romao, Licio [2 ]
Abate, Alessandro [2 ]
Jungers, Raphael M. [1 ]
机构
[1] UCLouvain, ICTEAM, Louvain, Belgium
[2] Univ Oxford, Dept Comp Sci, Oxford, England
基金
欧洲研究理事会;
关键词
DYNAMICAL-SYSTEMS; MARKOV; WASSERSTEIN;
D O I
10.1109/CDC49753.2023.10383513
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce an adaptive refinement procedure for smart and scalable abstraction of dynamical systems. Our technique relies on partitioning the state space depending on the observation of future outputs. However, this knowledge is dynamically constructed in an adaptive, asymmetric way. In order to learn the optimal structure, we define a Kantorovich-inspired metric between Markov chains, and we use it to guide the state partition refinement. Our technique is prone to datadriven frameworks, but not restricted to. We also study properties of the above mentioned metric between Markov chains, which we believe could be of broader interest. We propose an algorithm to approximate it, and we show that our method yields a much better computational complexity than using classical linear programming techniques.
引用
收藏
页码:6038 / 6043
页数:6
相关论文
共 50 条
  • [1] Data-Driven Controller Synthesis via Finite Abstractions With Formal Guarantees
    Ajeleye, Daniel
    Lavaei, Abolfazl
    Zamani, Majid
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 3453 - 3458
  • [2] Data-Driven Abstractions for Robots With Stochastic Dynamics
    Tanner, Herbert G.
    Stager, Adam
    IEEE TRANSACTIONS ON ROBOTICS, 2022, 38 (03) : 1686 - 1702
  • [3] Data-Driven Abstractions for Verification of Linear Systems
    Coppola, Rudi
    Peruffo, Andrea
    Mazo Jr, Manuel
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 2737 - 2742
  • [4] Data-driven refinements of a genetics learning progression
    Castro-Faix, Moraima
    Duncan, Ravit Golan
    Choi, Jinnie
    JOURNAL OF RESEARCH IN SCIENCE TEACHING, 2021, 58 (01) : 3 - 39
  • [5] Data-Driven Spatially-Adaptive Metric Adjustment for Visual Tracking
    Jiang, Nan
    Liu, Wenyu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (04) : 1556 - 1568
  • [6] Data-Driven Abstractions via Binary-Tree Gaussian Processes for Formal Verification
    Schon, Oliver
    Naseer, Shammakh
    Wooding, Ben
    Soudjani, Sadegh
    IFAC PAPERSONLINE, 2024, 58 (11): : 115 - 122
  • [7] Data-Driven Synthesis of Symbolic Abstractions With Guaranteed Confidence
    Lavaei, Abolfazl
    Frazzoli, Emilio
    IEEE CONTROL SYSTEMS LETTERS, 2022, 7 : 253 - 258
  • [8] A Data-Driven Metric of Incentive Compatibility
    Deng, Yuan
    Lahaie, Sebastien
    Mirrokni, Vahab
    Zuo, Song
    WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, : 1796 - 1806
  • [9] Object contour tracking via adaptive data-driven kernel
    Sun, Xin
    Wang, Wei
    Li, Dong
    Zou, Bin
    Yao, Hongxun
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2020, 2020 (01)
  • [10] Object contour tracking via adaptive data-driven kernel
    Xin Sun
    Wei Wang
    Dong Li
    Bin Zou
    Hongxun Yao
    EURASIP Journal on Advances in Signal Processing, 2020