Self-supervised Bidirectional Prompt Tuning for Entity-enhanced Pre-trained Language Model

被引:0
|
作者
Zou, Jiaxin [1 ]
Xu, Xianghong [1 ]
Hou, Jiawei [2 ]
Yang, Qiang [2 ]
Zheng, Hai-Tao [1 ,3 ]
机构
[1] Tsinghua Univ, Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
[2] Weixin Grp, Dept Search & Applicat, Tencent, Peoples R China
[3] Pengcheng Lab, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/IJCNN54540.2023.10192045
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the promotion of the pre-training paradigm, researchers are increasingly focusing on injecting external knowledge, such as entities and triplets from knowledge graphs, into pre-trained language models (PTMs) to improve their understanding and logical reasoning abilities. This results in significant improvements in natural language understanding and generation tasks and some level of interpretability. In this paper, we propose a novel two-stage entity knowledge enhancement pipeline for Chinese pre-trained models based on "bidirectional" prompt tuning. The pipeline consists of a "forward" stage, in which we construct fine-grained entity type prompt templates to boost PTMs injected with entity knowledge, and a "backward" stage, where the trained templates are used to generate type-constrained context-dependent negative samples for contrastive learning. Experiments on six classification tasks in the Chinese Language Understanding Evaluation (CLUE) benchmark demonstrate that our approach significantly improves upon the baseline results in most datasets, particularly those that have a strong reliance on diverse and extensive knowledge.
引用
收藏
页数:8
相关论文
共 50 条
  • [22] MedBERT: A Pre-trained Language Model for Biomedical Named Entity Recognition
    Vasantharajan, Charangan
    Tun, Kyaw Zin
    Thi-Nga, Ho
    Jain, Sparsh
    Rong, Tong
    Siong, Chng Eng
    PROCEEDINGS OF 2022 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2022, : 1482 - 1488
  • [23] Enriching Pre-trained Language Model with Entity Information for Relation Classification
    Wu, Shanchan
    He, Yifan
    PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), 2019, : 2361 - 2364
  • [24] END-TO-END SPOKEN LANGUAGE UNDERSTANDING USING TRANSFORMER NETWORKS AND SELF-SUPERVISED PRE-TRAINED FEATURES
    Morais, Edmilson
    Kuo, Hong-Kwang J.
    Thomas, Samuel
    Tuske, Zoltan
    Kingsbury, Brian
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 7483 - 7487
  • [25] CheSS: Chest X-Ray Pre-trained Model via Self-supervised Contrastive Learning
    Kyungjin Cho
    Ki Duk Kim
    Yujin Nam
    Jiheon Jeong
    Jeeyoung Kim
    Changyong Choi
    Soyoung Lee
    Jun Soo Lee
    Seoyeon Woo
    Gil-Sun Hong
    Joon Beom Seo
    Namkug Kim
    Journal of Digital Imaging, 2023, 36 : 902 - 910
  • [26] CheSS: Chest X-Ray Pre-trained Model via Self-supervised Contrastive Learning
    Cho, Kyungjin
    Kim, Ki Duk
    Nam, Yujin
    Jeong, Jiheon
    Kim, Jeeyoung
    Choi, Changyong
    Lee, Soyoung
    Lee, Jun Soo
    Woo, Seoyeon
    Hong, Gil-Sun
    Seo, Joon Beom
    Kim, Namkug
    JOURNAL OF DIGITAL IMAGING, 2023, 36 (03) : 902 - 910
  • [27] Adapting Pre-Trained Self-Supervised Learning Model for Speech Recognition with Light-Weight Adapters
    Yue, Xianghu
    Gao, Xiaoxue
    Qian, Xinyuan
    Li, Haizhou
    ELECTRONICS, 2024, 13 (01)
  • [28] Deep Entity Matching with Pre-Trained Language Models
    Li, Yuliang
    Li, Jinfeng
    Suhara, Yoshihiko
    Doan, AnHai
    Tan, Wang-Chiew
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2020, 14 (01): : 50 - 60
  • [29] Pre-trained Encoders in Self-Supervised Learning Improve Secure and Privacy-preserving Supervised Learning
    Liu, Hongbin
    Qu, Wenjie
    Jia, Jinyuan
    Gong, Neil Zhenqiang
    PROCEEDINGS 45TH IEEE SYMPOSIUM ON SECURITY AND PRIVACY WORKSHOPS, SPW 2024, 2024, : 144 - 156
  • [30] Improving Speech Separation with Knowledge Distilled from Self-supervised Pre-trained Models
    Qu, Bowen
    Li, Chenda
    Bai, Jinfeng
    Qian, Yanmin
    2022 13TH INTERNATIONAL SYMPOSIUM ON CHINESE SPOKEN LANGUAGE PROCESSING (ISCSLP), 2022, : 329 - 333