Energy-Dependent Charge Separation in Conjugated Polymer Electrolyte Complexes

被引:1
|
作者
Clark-Winters, Tylar L. L. [1 ]
Bragg, Arthur E. E. [1 ]
机构
[1] Johns Hopkins Univ, Dept Chem, 3400 N Charles St, Baltimore, MD 21218 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2023年 / 127卷 / 26期
基金
美国国家科学基金会;
关键词
POLY(3-HEXYLTHIOPHENE); GENERATION; PHOTOSYNTHESIS; POLYTHIOPHENE; PERFORMANCE; RELAXATION; MORPHOLOGY; TRANSPORT; EXCITONS; STATES;
D O I
10.1021/acs.jpcc.3c01868
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Supramolecular complexes have great potential as light-harvestingmaterials, as intermolecular structural organization can be manipulatedthrough steric or electrostatic interactions to impact electroniccoupling between energy and charge donors and acceptors. Here, weexamine the relative rates and efficiencies of charge transfer inconjugated polymer electrolyte complexes (CPECs) based on a polythiopheneelectron donor (PTAK) and polyfluorene electron acceptor (PFPI). TheseCPECs are characterized by ordered polymer microstructures, as evidentfrom spectral signatures of strong excitonic coupling within the PTAKcomponent from steady-state UV-vis absorption spectra. We findthat PTAK polarons are generated within tens of picoseconds througha combination of prompt and delayed charge separation following directphotoexcitation or energy transfer from PFPI. Further, we find thatdecreasing the length of charged PTAK side chains or increasing excitationenergy increases the driving force for electron transfer to increasecharge separation rates and yields for polarons, with the greatestrelative yields observed at excitation energies that initiate PFPI-to-PTAKenergy transfer. Charge separation between components can be rationalizedfrom a canonical Marcus picture, whereby excess vibrational energyeffectively lowers the barrier for PTAK-to-PFPI charge separation.This contrasts with the recently reported ultrafast (<100 fs) chargeseparation in small-molecule/polythiophene electrolyte complexes thatis attributed to strong orbital mixing that gives rise to charge generationvia CT exciton states. These results provide insights into conditionsfor realizing charge separation in concert with energy transfer inCPECs as light-harvesting materials.
引用
收藏
页码:12466 / 12476
页数:11
相关论文
共 50 条
  • [21] Temperature- and Energy-Dependent Separation of Charge-Transfer States in PTB7-Based Organic Solar Cells
    Gerhard, Marina
    Arndt, Andreas P.
    Howard, Ian A.
    Rahimi-Iman, Arash
    Lemmer, Uli
    Koch, Martin
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (51): : 28309 - 28318
  • [22] ENERGY-DEPENDENT SLATER INTEGRALS
    WILSON, M
    FRED, M
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1969, 59 (07) : 827 - &
  • [23] IS THE POLYMERIZATION OF ACTIN ENERGY-DEPENDENT
    FAULSTICH, H
    STOURNARAS, C
    HOPPE-SEYLERS ZEITSCHRIFT FUR PHYSIOLOGISCHE CHEMIE, 1983, 364 (09): : 1120 - 1121
  • [24] Resveratrol cytotoxicity is energy-dependent
    Olivares-Marin, Ivanna K.
    Carlos Gonzalez-Hernandez, Juan
    Alberto Madrigal-Perez, Luis
    JOURNAL OF FOOD BIOCHEMISTRY, 2019, 43 (09)
  • [25] ENERGY-DEPENDENT NUCLEAR PHENOMENA
    ERICSON, TEO
    AIP CONFERENCE PROCEEDINGS, 1985, (128) : 172 - 179
  • [26] ENERGY-DEPENDENT MODEL PSEUDOPOTENTIAL
    SO, CB
    WANG, S
    JOURNAL OF PHYSICS F-METAL PHYSICS, 1977, 7 (01): : 35 - 46
  • [27] Generating Energy-Dependent Potentials
    U. Laha
    Journal of the Korean Physical Society, 2019, 75 : 935 - 940
  • [28] Electron -: hole separation distance during the charge carrier photogeneration in conjugated polymer
    Gulbinas, V
    Bässler, H
    Yartsev, A
    Zaushitsyn, Y
    Sundström, V
    ADVANCED ORGANIC AND INORGANIC OPTICAL MATERIALS, 2003, 5122 : 156 - 162
  • [29] Photoinduced charge separation and recombination in a conjugated polymer-semiconductor nanocrystal composite
    Salafsky, JS
    Lubberhuizen, WH
    Schropp, REI
    CHEMICAL PHYSICS LETTERS, 1998, 290 (4-6) : 297 - 303
  • [30] ON ENERGY-DEPENDENT TRANSPORT EQUATION
    SUMMERFIELD, GC
    ZWEIFEL, PF
    NUCLEAR SCIENCE AND ENGINEERING, 1963, 15 (04) : 476 - &