A First Fundamental Theorem of Invariant Theory for the Quantum Queer Superalgebra

被引:1
|
作者
Chang, Zhihua [1 ]
Wang, Yongjie [2 ]
机构
[1] South China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R China
[2] Hefei Univ Technol, Sch Math, Hefei 230009, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantum queer superalgebra; Howe duality; Invariant theory; LIE-SUPERALGEBRAS; CRYSTAL BASES; ANALOG;
D O I
10.1007/s00031-023-09818-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The classical invariant theory for the queer Lie superalgebra is an investigation of the U(q(n))-invariant sub-superalgebra of the symmetric superalgebra Sym (V-circle plus r circle plus V*(circle plus s)) for V = C-n vertical bar n. We establish a first fundamental theorem of invariant theory in the case that the quantum queer superalgebra U-q(q(n)) acts on a quantum analogue O-r,O-s of the symmetric superalgebra Sym(V-circle plus r circle plus V*(circle plus s)). The superalgebra O-r,O-s is a braided tensor product of a quantum analogue A(r,n) of Sym (V-circle plus r) and a quantum analogue (A) over bar (s,n) of Sym (V*(circle plus s)). Since the quantum queer superalgebra U-q(q(n)) is not quasi-triangular, our braided tensor product is created via an explicit intertwining operator instead of the universal R-matrix.
引用
收藏
页数:32
相关论文
共 50 条