Reusing spent fluid catalytic cracking catalyst as an adsorbent in wastewater treatment applications

被引:6
|
作者
Gameiro, T. [1 ]
Costa, C. [2 ]
Labrincha, J. [1 ]
Novais, R. M. [1 ]
机构
[1] Univ Aveiro, CICECO Aveiro Inst Mat, Dept Mat & Ceram Engn, Campus Univ Santiago, P-3810193 Aveiro, Portugal
[2] Lisbon Polytech Inst, ISEL High Inst Engn Lisbon, P-1959007 Lisbon, Portugal
关键词
Methylene blue adsorption; Langmuir; Pseudo-second order; Oil refinery waste; Sustainable development; METHYLENE-BLUE ADSORPTION; AQUEOUS-SOLUTION; ACTIVATED CARBON; FCC CATALYST; REMOVAL; EQUILIBRIUM; KINETICS; DYE; PARAMETERS; ISOTHERMS;
D O I
10.1016/j.mtsust.2023.100555
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Spent fluid catalytic cracking (FCC) catalyst is a waste from oil industry generated in very high amounts globally, being a major environmental burden as it is mostly landfilled. The direct use of this waste in wastewater treatment applications is rare, and the present study aims to fill the existing research gap. This is the first systematic investigation regarding the use of spent FCC catalyst as adsorbent material, for extracting methylene blue (MB) (pollutant model molecule) from wastewater.The effects of contact time (5 min-48 h), adsorbent dosage (0.5-3 g/L), adsorbate concentration (5-400 mg/L), and the reaction kinetics, were investigated. MB concentrations above 200 mg/L achieved a maximum uptake of 90.8 mg/g after 48 h. For MB concentrations below 10 mg/L, very fast dye removal was observed, reaching 100% after 1 h. The adsorption of MB followed a pseudo-second-order model (chemisorption), and the Langmuir model better described the experimental data (monolayer adsorption). The novel strategy here reported is aligned with key Sustainable Development Goals - 6, 9,12 and 13 - and with the concept of the Circular Economy, and these results might add value to industrial waste whose availability is still expected to grow substantially soon.(c) 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:15
相关论文
共 50 条
  • [31] The state of nickel in spent Fluid Catalytic Cracking catalysts
    Busca, Guido
    Riani, Paola
    Garbarino, Gabriella
    Ziemacki, Giovanni
    Gambino, Leonardo
    Montanari, Erica
    Millini, Roberto
    APPLIED CATALYSIS A-GENERAL, 2014, 486 : 176 - 186
  • [32] Reusing spent polyaluminum chloride sludge as adsorbent for phosphate removal from secondary wastewater effluent
    Chen, Yao-Sen
    Chang, Wei-Chin
    Chiang, Shih-Min
    Tseng, Chun-Cheng
    Su, Mei-Hsin
    DESALINATION AND WATER TREATMENT, 2013, 51 (16-18) : 3344 - 3352
  • [33] Fluid catalytic cracking: process, catalyst and chemistry
    Guisnet, M
    Mignard, S
    ACTUALITE CHIMIQUE, 2000, (02): : 14 - 22
  • [34] A review of catalyst deactivation in fluid catalytic cracking
    OConnor, P
    Brevoord, E
    Wijingaards, HN
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1996, 211 : 72 - PETR
  • [35] Sodium Deactivation of Fluid Catalytic Cracking Catalyst
    Zhao, X.
    Cheng, W.-C.
    ACS Symposium Series, 1996, (634):
  • [36] Sodium deactivation of fluid catalytic cracking catalyst
    Zhao, XJ
    Cheng, WC
    DEACTIVATION AND TESTING OF HYDROCARBON-PROCESSING CATALYSTS, 1996, 634 : 159 - 170
  • [37] Fluid catalyst process - Catalytic cracking of pertroleum
    Murphree, EV
    Brown, CL
    Fischer, HGM
    Gohr, EJ
    Sweeney, WJ
    INDUSTRIAL AND ENGINEERING CHEMISTRY, 1943, 35 : 768 - 773
  • [38] Geopolymer synthesized from spent fluid catalytic cracking catalyst and its heavy metal immobilization behavior
    Hong-Zhe Zhang
    Shi-Ping Fang
    Zheng-Wei Liu
    Xiang-Qian Zhang
    Journal of Material Cycles and Waste Management, 2021, 23 : 976 - 984
  • [39] Bioleaching of rare earth elements from spent fluid catalytic cracking catalyst using Acidothiobacillus ferrooxidans
    Muddanna, Mouna Hanabe
    Baral, Saroj Sundar
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2021, 9 (01):
  • [40] Study on synergistic pyrolysis and kinetics of mixed plastics based on spent fluid-catalytic-cracking catalyst
    Kongshuo Wang
    Huiguang Bian
    Qingxiang Lai
    Yahui Chen
    Zhaoyang Li
    Yingjie Hao
    Lizhi Yan
    Chuansheng Wang
    Xiaolong Tian
    Environmental Science and Pollution Research, 2023, 30 : 66665 - 66682