Finite groups with 2-minimal or 2-maximal subgroups are Hall normally embedded subgroups

被引:2
|
作者
He, Xuanli [1 ]
Wang, Jing [1 ]
Guo, Qinghong [2 ]
机构
[1] Guangxi Univ, Coll Math & Informat Sci, Nanning, Guangxi, Peoples R China
[2] Cent South Univ, Sch Math & Stat, New Campus, Changsha 410083, Hunan, Peoples R China
关键词
Hall normally embedded subgroup; p-nilpotent group; supersolvable group; COMPLEMENTED SUBGROUPS;
D O I
10.1080/00927872.2023.2232864
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group. A subgroup H of G is called Hall normally embedded in G if H is a Hall subgroup of the normal closure H-G of H in G. In this paper, we investigate the structure of a finite group G under the assumption that certain 2-minimal subgroups and 2-maximal subgroups are Hall normally embedded in G, respectively. Some conditions for a finite group to be p-nilpotent and supersolvable are given.
引用
收藏
页码:5359 / 5368
页数:10
相关论文
共 50 条
  • [21] Groups with Formation Subnormal 2-Maximal Subgroups
    V. S. Monakhov
    Mathematical Notes, 2019, 105 : 251 - 257
  • [22] Finite groups with normally embedded subgroups
    Shen, Zhencai
    Li, Shirong
    Shi, Wujie
    JOURNAL OF GROUP THEORY, 2010, 13 (02) : 257 - 265
  • [23] On Groups with Formational Subnormal Strictly 2-Maximal Subgroups
    Monakhov, V. S.
    Konovalova, M. M.
    UKRAINIAN MATHEMATICAL JOURNAL, 2021, 73 (01) : 120 - 130
  • [24] On Groups with Formational Subnormal Strictly 2-Maximal Subgroups
    V. S. Monakhov
    M. M. Konovalova
    Ukrainian Mathematical Journal, 2021, 73 : 120 - 130
  • [25] Finite groups in which all 2-maximal subgroups are pi-decomposable
    Belonogov, V. A.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2014, 20 (02): : 29 - 43
  • [26] On Hall normally embedded subgroups and the p-nilpotency of finite groups
    He, Xuanli
    Wang, Jing
    Sun, Qinhui
    COMMUNICATIONS IN ALGEBRA, 2025, 53 (04) : 1428 - 1437
  • [27] Supersolubility of a Finite Group with Normally Embedded Maximal Subgroups in Sylow Subgroups
    V. S. Monakhov
    A. A. Trofimuk
    Siberian Mathematical Journal, 2018, 59 : 922 - 930
  • [28] 2-Minimal subgroups of monomial, linear and unitary groups
    Parker, Chris
    Rowley, Peter
    JOURNAL OF ALGEBRA, 2020, 543 : 1 - 53
  • [29] Supersolubility of a Finite Group with Normally Embedded Maximal Subgroups in Sylow Subgroups
    Monakhov, V. S.
    Trofimuk, A. A.
    SIBERIAN MATHEMATICAL JOURNAL, 2018, 59 (05) : 922 - 930
  • [30] On Hall embedded subgroups of finite groups
    Monakhov, Victor
    Kniahina, Viktoryia
    JOURNAL OF GROUP THEORY, 2015, 18 (04) : 565 - 568