Learning a robust unified domain adaptation framework for cross-subject EEG-based emotion recognition

被引:15
|
作者
Jimenez-Guarneros, Magdiel [1 ]
Fuentes-Pineda, Gibran [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Dept Comp Sci, Inst Invest Matemat Aplicadas & Sistemas, Circuito Escolar S-N,Ciudad Univ, Mexico City 04510, Mexico
关键词
Unsupervised domain adaptation; Deep learning; Emotion recognition; Electroencephalogram; NEURAL-NETWORKS;
D O I
10.1016/j.bspc.2023.105138
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Over the last few years, unsupervised domain adaptation (UDA) based on deep learning has emerged as a solution to build cross-subject emotion recognition models from Electroencephalogram (EEG) signals, aligning the subject distributions within a latent feature space. However, most reported works have a common intrinsic limitation: the subject distribution alignment is coarse-grained, but not all of the feature space is shared between subjects. In this paper, we propose a robust unified domain adaptation framework, named Multi-source Feature Alignment and Label Rectification (MFA-LR), which performs a fine-grained domain alignment at subject and class levels, while inter-class separation and robustness against input perturbations are encouraged in coarse grain. As a complementary step, a pseudo-labeling correction procedure is used to rectify mislabeled target samples. Our proposal was assessed over two public datasets, SEED and SEED-IV, on each of the three available sessions, using leave-one-subject-out cross-validation. Experimental results show an accuracy performance of up to 89.11 & PLUSMN; 07.72% and 74.99 & PLUSMN; 12.10% for the best session on SEED and SEED-IV, as well as an average accuracy of 85.27% and 69.58% on all three sessions, outperforming state-of-the-art results.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Self-supervised contrastive learning for EEG-based cross-subject motor imagery recognition
    Li, Wenjie
    Li, Haoyu
    Sun, Xinlin
    Kang, Huicong
    An, Shan
    Wang, Guoxin
    Gao, Zhongke
    JOURNAL OF NEURAL ENGINEERING, 2024, 21 (02)
  • [42] Easy Domain Adaptation for cross-subject multi-view emotion recognition
    Chen, Chuangquan
    Vong, Chi-Man
    Wang, Shitong
    Wang, Hongtao
    Pang, Miaoqi
    KNOWLEDGE-BASED SYSTEMS, 2022, 239
  • [43] EEG-based Emotion Recognition Using Domain Adaptation Network
    Jin, Yi-Ming
    Luo, Yu-Dong
    Zheng, Wei-Long
    Lu, Bao-Liang
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON ORANGE TECHNOLOGIES (ICOT), 2017, : 222 - 225
  • [44] Cross-Subject EEG Signal Recognition Using Deep Domain Adaptation Network
    Hang, Wenlong
    Feng, Wei
    Du, Ruoyu
    Liang, Shuang
    Chen, Yan
    Wang, Qiong
    Liu, Xuejun
    IEEE ACCESS, 2019, 7 : 128273 - 128282
  • [45] Cross-Subject Channel Selection Using Modified Relief and Simplified CNN-Based Deep Learning for EEG-Based Emotion Recognition
    Farokhah, Lia
    Sarno, Riyanarto
    Fatichah, Chastine
    IEEE ACCESS, 2023, 11 : 110136 - 110150
  • [46] Toward cross-subject and cross-session generalization in EEG-based emotion recognition: Systematic review, taxonomy, and methods
    Apicella, Andrea
    Arpaia, Pasquale
    D'Errico, Giovanni
    Marocco, Davide
    Mastrati, Giovanna
    Moccaldi, Nicola
    Prevete, Roberto
    NEUROCOMPUTING, 2024, 604
  • [47] Enhanced Subspace Alignment with Clustering and Weighting for Cross-Subject Multi-Session EEG-based Emotion Recognition
    Shirkarami, Mohsen
    Mohammadzade, Hoda
    2023 30TH NATIONAL AND 8TH INTERNATIONAL IRANIAN CONFERENCE ON BIOMEDICAL ENGINEERING, ICBME, 2023, : 104 - 109
  • [48] Cross-subject EEG-based emotion recognition through dynamic optimization of random forest with sparrow search algorithm
    Zhang X.
    Wang S.
    Xu K.
    Zhao R.
    She Y.
    Mathematical Biosciences and Engineering, 2024, 21 (03) : 4779 - 4800
  • [49] Subject matching for cross-subject EEG-based recognition of driver states related to situation awareness
    Li, Ruilin
    Wang, Lipo
    Sourina, Olga
    METHODS, 2022, 202 : 136 - 143
  • [50] A novel multi-source contrastive learning approach for robust cross-subject emotion recognition in EEG data
    Deng, Xin
    Li, Chenhui
    Hong, Xinyi
    Huo, Huaxiang
    Qin, Hongxing
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 97