TACT: Text attention based CNN-Transformer network for polyp segmentation

被引:1
|
作者
Zhao, Yiyang [1 ]
Li, Jinjiang [1 ,3 ]
Hua, Zhen [2 ]
机构
[1] Shandong Technol & Business Univ, Sch Comp Sci & Technol, Yantai, Peoples R China
[2] Shandong Technol & Business Univ, Sch Informat & Elect Engn, Yantai, Peoples R China
[3] Shandong Technol & Business Univ, Yantai 264005, Peoples R China
基金
中国国家自然科学基金;
关键词
CNN-Transformer; colonoscopy; medical image segmentation; polyp segmentation;
D O I
10.1002/ima.22997
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Colorectal cancer (CRC) has been one of the top three disease in the world in terms of incidence for many years. Therefore, how to prevent and treat CRC has become a topic of concern for an increasing number of people, and colonoscopy is the most effective detection method in polyp examination. According to studies, 90% of CRC is caused by adenomatous polyps of the large intestine. In clinical practice, the diversity of polyps' size, number, and shape and the unclear boundary between polyps and colon folds can reduce the operator's accuracy of polyps segmentation and lead to a higher rate of missed diagnosis. To better address the inaccurate segmentation or high miss rate due to the above factors, we propose a text attention-based CNN-Transformer network for polyp segmentation (TACT) network to process the images in a way that minimizes operator subjectivity and miss rate. The network is based on the CNN-Transformer structure, and on this basis, a fully attention progressive sampling module is added to more accurately divide the polyp boundary. Moreover, an auxiliary text classification task was added to focus on polyp size and number features in the form of text attention, which more effectively copes with the segmentation tasks of different sizes and different numbers of polyps. After comparing with multiple state-of-the-art segmentation methods in four challenging datasets, our proposed TACT improves segmentation accuracy for polyps of different sizes in different datasets.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Progressive CNN-transformer semantic compensation network for polyp segmentation
    Li, Daxiang
    Li, Denghui
    Liu, Ying
    Tang, Yao
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2024, 32 (16): : 2523 - 2536
  • [2] HCTA-Net: A Hybrid CNN-Transformer Attention Network for Surgical Instrument Segmentation
    Yang, Lei
    Wang, Hongyong
    Bian, Guibin
    Liu, Yanhong
    IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS, 2023, 5 (04): : 929 - 944
  • [3] TFCNs: A CNN-Transformer Hybrid Network for Medical Image Segmentation
    Li, Zihan
    Li, Dihan
    Xu, Cangbai
    Wang, Weice
    Hong, Qingqi
    Li, Qingde
    Tian, Jie
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT IV, 2022, 13532 : 781 - 792
  • [4] ACTNet: A Dual-Attention Adapter with a CNN-Transformer Network for the Semantic Segmentation of Remote Sensing Imagery
    Zhang, Zheng
    Liu, Fanchen
    Liu, Changan
    Tian, Qing
    Qu, Hongquan
    REMOTE SENSING, 2023, 15 (09)
  • [5] CNN-TRANSFORMER WITH SELF-ATTENTION NETWORK FOR SOUND EVENT DETECTION
    Wakayama, Keigo
    Saito, Shoichiro
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 806 - 810
  • [6] HCTNet: A hybrid CNN-transformer network for breast ultrasound image segmentation
    He, Qiqi
    Yang, Qiuju
    Xie, Minghao
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 155
  • [7] Shared Hybrid Attention Transformer network for colon polyp segmentation
    Ji, Zexuan
    Qian, Hao
    Ma, Xiao
    NEUROCOMPUTING, 2025, 616
  • [8] A synergistic CNN-transformer network with pooling attention fusion for hyperspectral image classification
    Chen, Peng
    He, Wenxuan
    Qian, Feng
    Shi, Guangyao
    Yan, Jingwen
    DIGITAL SIGNAL PROCESSING, 2025, 160
  • [9] DPNet: Scene text detection based on dual perspective CNN-transformer
    Li, Yuan
    PLOS ONE, 2024, 19 (10):
  • [10] Image Deblurring Based on an Improved CNN-Transformer Combination Network
    Chen, Xiaolin
    Wan, Yuanyuan
    Wang, Donghe
    Wang, Yuqing
    APPLIED SCIENCES-BASEL, 2023, 13 (01):