A localized decomposition evolutionary algorithm for imbalanced multi-objective optimization

被引:2
|
作者
Ye, Yulong [1 ]
Lin, Qiuzhen [1 ]
Wong, Ka-Chun [2 ]
Li, Jianqiang [1 ]
Ming, Zhong [1 ]
Coello, Carlos A. Coello [3 ,4 ,5 ]
机构
[1] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R China
[2] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
[3] CINVESTAV, IPN, Dept Comp Sci, Mexico City 07360, DF, Mexico
[4] Basque Ctr Appl Math BCAM, Bilbao 48160, Spain
[5] Ikerbasque, Bilbao, Spain
基金
中国国家自然科学基金;
关键词
Multi-objective optimization; Evolutionary algorithm; Localized decomposition; MANY-OBJECTIVE OPTIMIZATION; SELECTION; MOEA/D;
D O I
10.1016/j.engappai.2023.107564
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multi-objective evolutionary algorithms based on decomposition (MOEA/Ds) convert a multi-objective optimization problem (MOP) into a set of scalar subproblems, which are then optimized in a collaborative manner. However, when tackling imbalanced MOPs, the performance of most MOEA/Ds will evidently deteriorate, as a few solutions will replace most of the others in the evolutionary process, resulting in a significant loss of diversity. To address this issue, this paper suggests a localized decomposition evolutionary algorithm (LDEA) for imbalanced MOPs. A localized decomposition method is proposed to assign a local region for each subproblem, where the inside solutions are associated and the solution update is restricted inside (i.e., solutions are only replaced by offspring within the same local region). Once off-spring are generated within an originally empty region, the best one is reserved for this subproblem to extend diversity. Meanwhile, the subproblem with the largest number of associated solutions will be found and one of its associated solutions with the worst aggregated value will be removed. Moreover, to speed up convergence for each subproblem while balancing the population's diversity, LDEA only evolves the best-associated solution in each subproblem and correspondingly tailors two decomposition methods in the environmental selection. When compared to nine competitive MOEAs, LDEA has shown the advantages in tackling two benchmark sets of imbalanced MOPs, one benchmark set of balanced yet complicated MOPs, and one real-world MOP.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] A new dynamic multi-objective optimization evolutionary algorithm
    Liu, Chun-An
    Wang, Yuping
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2008, 4 (08): : 2087 - 2096
  • [32] The Research and Summary of Evolutionary Multi-objective Optimization Algorithm
    Xu Jingqi
    INTELLIGENCE COMPUTATION AND EVOLUTIONARY COMPUTATION, 2013, 180 : 505 - 512
  • [33] Parallel Dynamic Multi-Objective Optimization Evolutionary Algorithm
    Grid, Maroua
    Belaiche, Leila
    Kahloul, Laid
    Benharzallah, Saber
    2021 22ND INTERNATIONAL ARAB CONFERENCE ON INFORMATION TECHNOLOGY (ACIT), 2021, : 164 - 169
  • [34] RESEARCH ON A MULTI-OBJECTIVE CONSTRAINED OPTIMIZATION EVOLUTIONARY ALGORITHM
    Xiu, Jiapeng
    He, Qun
    Yang, Zhengqiu
    Liu, Chen
    PROCEEDINGS OF 2016 4TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (IEEE CCIS 2016), 2016, : 282 - 286
  • [35] Multi-objective evolutionary algorithm for optimization of combustion processes
    Büche, D
    Stoll, P
    Koumoutsakos, P
    MANIPULATION AND CONTROL OF JETS IN CROSSFLOW, 2003, (439): : 157 - 169
  • [36] An Improved Adaptive Evolutionary Algorithm for Multi-objective Optimization
    Wang, Jianwei
    Zhang, Jianming
    SENSORS, MEASUREMENT AND INTELLIGENT MATERIALS, PTS 1-4, 2013, 303-306 : 1494 - +
  • [37] Evolutionary Rough Parallel Multi-Objective Optimization Algorithm
    Maulik, Ujjwal
    Sarkar, Anasua
    FUNDAMENTA INFORMATICAE, 2010, 99 (01) : 13 - 27
  • [38] Multi-objective and MGG evolutionary algorithm for constrained optimization
    Zhou, YR
    Li, YX
    He, J
    Kang, LS
    CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 1 - 5
  • [39] Improved multi-objective optimization evolutionary algorithm on chaos
    Ding, Xue, 1600, Science and Engineering Research Support Society (09):
  • [40] An Evolutionary Sequential Sampling Algorithm for Multi-Objective Optimization
    Thanos, Aristotelis E.
    Celik, Nurcin
    Saenz, Juan P.
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2016, 33 (01)