N-doped graphene leaves on carbon nanotubes and NiMn2O4-graphene hybrid nanocomposites with ionogel film for flexible symmetric and asymmetric supercapacitors

被引:11
|
作者
Mangishetti, Sandya Rani [1 ]
Jang, Daehee [1 ]
Choi, Junil [1 ]
Rajeshkhanna, Gaddam [3 ]
Pittala, Suresh [4 ]
Kang, Song Kyu [1 ]
Ji, Junhyuk [1 ]
Kim, Minho [1 ]
Jung, Seung Gyu [1 ]
Ha, Jungseub [1 ]
Kim, Jihoon [1 ]
Maeng, Junbeom [1 ]
Park, Gwan Hyeon [1 ]
Bae, Jaejin [1 ]
Kim, Won Bae [1 ,2 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Chem Engn, 77 Cheongam Ro, Pohang 37673, Gyeongbuk, South Korea
[2] Pohang Univ Sci & Technol POSTECH, Grad Inst Ferrous & Energy Mat Technol, 77 Cheongam Ro, Pohang 37673, South Korea
[3] Natl Inst Technol Warangal, Dept Chem, Warangal 506004, India
[4] Dayananda Sagar Univ, Sch Engn, Dept Phys, Bengaluru 562112, India
基金
新加坡国家研究基金会;
关键词
Graphene; Carbon nanotubes; Spinel structure; Supercapacitor; Flexible device; SOLID-STATE SUPERCAPACITORS; GEL POLYMER ELECTROLYTE; PERFORMANCE; MECHANISM; EFFICIENT; DESIGN;
D O I
10.1016/j.cej.2023.144863
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The efficient fusion of the various components into hybrid nanostructures in a hierarchical three-dimensional fashion is found to be one of the significant strategies to obtain potential electrode materials for super-capacitors. In addressing this, two diverse kinds of 3D graphene-based hybrid nanomaterials are synthesized using facile and scalable approaches, and then their microstructural properties are studied. The developed 3D nitrogen doped-graphene leaves on bamboo shaped carbon nanotubes (N-glbNT-850) exhibit a high specific capacitance of 528 F/g at a 2 A/g current density. 3D blooming flower structured NiMn2O4-graphene electrode exhibit a high specific capacity and rate capability of 1632 C/g, and 88.1%, respectively. Further, a new ionogel electrolyte film is developed by incorporating a high concentration (96 wt%) of ionic liquid into a 4 wt% polymer host. A flexible symmetric supercapacitor fabricated by using this solid-state ionogel electrolyte film and a flexible asymmetric supercapacitor fashioned of N-glbNT//NiMn2O4-graphene could exhibit a wide working voltage range (3.4 V and 1.6 V, respectively), excellent energy density (96.3 and 156.8 Wh/kg, respectively), outstanding power density (3.39 and 2.34 kW/kg, respectively), and good rate performance with high cycle stability and remarkable flexibility. Thus, the development of inexpensive and efficient electrode materials based on graphene and effective solid-state ionogel electrolytes and the application of these technologies for efficient energy storage devices have all been made possible by the new and effective strategic process, which can be beneficial for commercial applications of energy storage, conversion, and environmental systems.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] NiCo2O4/N-doped graphene as an advanced electrocatalyst for oxygen reduction reaction
    Zhang, Hui
    Li, Huiyong
    Wang, Haiyan
    He, Kejian
    Wang, Shuangyin
    Tang, Yougen
    Chen, Jiajie
    JOURNAL OF POWER SOURCES, 2015, 280 : 640 - 648
  • [42] N-Doped carbon as the anode and ZnCo2O4/N-doped carbon nanocomposite as the cathode for high-performance asymmetric supercapacitor application
    Gunasekaran, Sivagaami Sundari
    Badhulika, Sushmee
    NEW JOURNAL OF CHEMISTRY, 2021, 45 (21) : 9550 - 9560
  • [43] MnCo2S4/FeCo2S4 "lollipop" arrays on a hollow N-doped carbon skeleton as flexible electrodes for hybrid supercapacitors
    Huang, Yunpeng
    Cui, Fen
    Bao, Jian
    Zhao, Yan
    Lian, Jiabiao
    Liu, Tianxi
    Li, Huaming
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (36) : 20778 - 20789
  • [44] Hybrid Fibers Made of Molybdenum Disulfide, Reduced Graphene Oxide, and Multi-Walled Carbon Nanotubes for Solid-State, Flexible, Asymmetric Supercapacitors
    Sun, Gengzhi
    Zhang, Xiao
    Lin, Rongzhou
    Yang, Jian
    Zhang, Hua
    Chen, Peng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (15) : 4651 - 4656
  • [45] Advanced electrochemical performance of ZnMn2O4/N-doped graphene hybrid as cathode material for zinc ion battery
    Chen, Linlin
    Yang, Zhanhong
    Qin, Haigang
    Zeng, Xiao
    Meng, Jinlei
    JOURNAL OF POWER SOURCES, 2019, 425 : 162 - 169
  • [46] Robust nanocomposites of α-Fe2O3 and N-doped graphene oxide: Interfacial bonding and chemisorption of H2O
    Polfus, Jonathan M.
    Jayasayee, Kaushik
    CARBON, 2019, 152 : 497 - 502
  • [47] Flexible high-energy asymmetric supercapacitors based on PANI@CNT-graphene and NiCo2O4@N-C electrode
    Peng, Min
    Tian, Xia
    Li, Dequan
    Wang, Qiufan
    Zhang, Daohong
    MATERIALS LETTERS, 2020, 272
  • [48] Free-standing N-doped carbon nanofibers/carbon nanotubes hybrid film for flexible, robust half and full lithium-ion batteries
    Huang, Ling
    Guan, Qun
    Cheng, Jianli
    Li, Chun
    Ni, Wei
    Wang, Zhuanpei
    Zhang, Yun
    Wang, Bin
    CHEMICAL ENGINEERING JOURNAL, 2018, 334 : 682 - 690
  • [49] Free-standing N-doped carbon nanofibers/carbon nanotubes hybrid film for flexible, robust half and full lithium-ion batteries
    Cheng, Jianli (jianlicheng@caep.cn), 1600, Elsevier B.V., Netherlands (334):
  • [50] Oxygen vacancy-enriched NiCo2O4 spinels/N-doped carbon nanotubes-graphene composites for the ethylene glycol electro-oxidation
    Suarez-Barajas, Alexander
    Ramos-Castillo, C. M.
    Olivas, Amelia
    Guerra-Balcazar, Minerva
    Alvarez-Contreras, Lorena
    Arjona, Noe
    FUEL, 2024, 360