Experimental analysis on calcination and carbonation process in calcium looping for CO2 capture: study case of cement plants in Indonesia

被引:3
|
作者
Febriatna, Triya Setia [1 ]
Darmanto, Prihadi Setyo [2 ]
Juangsa, Firman Bagja [2 ,3 ]
机构
[1] Inst Teknol Bandung, Fac Mech & Aerosp Engn, Master Program Mech Engn, Bandung, Indonesia
[2] Inst Teknol Bandung, Fac Mech & Aerosp Engn, Bandung, Indonesia
[3] Inst Teknol Bandung, Res Ctr New & Renewable Energy, Bandung, Indonesia
来源
CLEAN ENERGY | 2023年 / 7卷 / 02期
关键词
CO2; emissions; cement industry; carbon capture; calcium looping; calcination; carbonation; LIMESTONE CALCINATION; HYDRATION; DECOMPOSITION; REACTIVATION; EMISSIONS; SORBENT; STORAGE; SYSTEM; STEAM;
D O I
10.1093/ce/zkac072
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This work experimentally investigates calcium looping using limestone obtained directly from several cement factories in Indonesia to observe the carbon-absorption characteristics of limestone from different mining locations. The promising performance of raw limestones allows the possibility of CO2 emission reduction in the sustainable cement-production process. Carbon dioxide (CO2) is the main contributor to greenhouse gases that affect global warming. The industrial sector is the third largest producer of CO2 and the cement industry is one of the industries that consistently produces the most significant CO2 emissions. The cement industry produces 5-8% of global CO2 emissions. Several methods for reducing specific CO2 emissions have been reported in the cement industry, including calcium looping, which uses the reversible reaction between calcination [calcium carbonate (CaCO3) decomposition] and carbonation [CO2 capture by calcium oxide (CaO)]. This work investigates calcium looping employing limestone obtained directly from several cement factories in Indonesia to observe the carbon-absorption characteristics of limestone from different mining locations. The experiment was carried out using a tube furnace equipped with a controlled atmospheric condition that functions as a calciner and a carbonator. X-ray diffraction and scanning electron microscopy with energy-dispersive x-ray spectroscopy characterization were conducted to analyse the changes in the experimental samples. The results demonstrated that the reactor configuration was capable of performing the calcination process, which converted CaCO3 to calcium hydroxide [Ca(OH)(2)], as well as the carbonation process, which captured carbon and converted it back to CaCO3. Parametric analysis was performed on both reactions, including pressure, temperature, duration, particle size and reaction atmosphere. The results show that the limestone obtained from all sites can be used as the sorbents for the calcium-looping process with an average reactivity of 59.01%. Limestone from cement plants in various parts of Indonesia has the potential to be used as carbon sorbents in calcium-looping technology. With a similar CO2 concentration as the flue gas of 16.67%, the experimental results show that Bayah limestone has the maximum reactivity, as shown by the highest carbon-content addition of 12.15 wt% and has the highest CO2-capture capability up to >75% per mole of Ca(OH)(2) as a sorbent. Similar levels of the ability to capture CO2 per mole of Ca(OH)(2) can be found in other limestones, ranging from 14.85% to 34.07%. The results show a promising performance of raw limestones from different mining sites, allowing further study and observation of the possibility of CO2 emission reduction in the sustainable cement-production process.
引用
收藏
页码:313 / 327
页数:15
相关论文
共 50 条
  • [41] Sulfation of CaO particles in a carbonation/calcination loop to capture CO2
    Grasa, Gerruna S.
    Alonso, Monica
    Abanades, J. Carlos
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2008, 47 (05) : 1630 - 1635
  • [42] Techno-economic analysis of calcium looping processes for low CO2 emission cement plants
    De Lena, Edoardo
    Spinelli, Maurizio
    Gatti, Manuele
    Scaccabarozzi, Roberto
    Campanari, Stefano
    Consonni, Stefano
    Cinti, Giovanni
    Romano, Matteo C.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2019, 82 : 244 - 260
  • [43] Hydrodynamical model and experimental results of a calcium looping cycle for CO2 capture
    Lisbona, Pilar
    Martinez, Ana
    Romeo, Luis M.
    APPLIED ENERGY, 2013, 101 : 317 - 322
  • [44] CO2 capture and utilization through isothermal carbonation-calcination looping integrated with MSW pyrolysis volatile reforming
    Liu, Guicai
    Hu, Zhifeng
    Lisak, Grzegorz
    CHEMICAL ENGINEERING JOURNAL, 2024, 482
  • [45] Effect of manganese nitrate on calcination/carbonation for CO2 capture using calcium-based sorbent
    Sun, Rong-Yue
    Li, Ying-Jie
    Liu, Hong-Ling
    Lu, Chun-Mei
    Meitan Xuebao/Journal of the China Coal Society, 2011, 36 (08): : 1391 - 1395
  • [46] Efficient NO reduction by carbon-deposited CaO in the carbonation step of calcium looping for the CO2 capture
    Zhang, Wan
    Qian, Yuqi
    Li, Yingjie
    He, Zirui
    Zhao, Jianli
    REACTION CHEMISTRY & ENGINEERING, 2021, 6 (10): : 1829 - 1844
  • [47] Influence of SO2 on the cyclic calcination and carbonation of calcium-based sorbent for CO2 capture
    Wu, Hao
    Wang, Meng
    Liu, Hao
    Yang, Hong-Min
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2013, 41 (03): : 368 - 373
  • [48] Calcium looping CO2 capture system for back-up power plants
    Criado, Y. A.
    Arias, B.
    Abanades, J. C.
    ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (09) : 1994 - 2004
  • [49] Thermodynamic analysis of CO2 capture by calcium looping process driven by coal and concentrated solar power
    Zhai, Rongrong
    Li, Chao
    Qi, Jiawei
    Yang, Yongping
    ENERGY CONVERSION AND MANAGEMENT, 2016, 117 : 251 - 263
  • [50] Experimental Validation of the Calcium Looping CO2 Capture Process with Two Circulating Fluidized Bed Carbonator Reactors
    Charitos, Alexander
    Rodriguez, Nuria
    Hawthorne, Craig
    Alonso, Monica
    Zieba, Mariusz
    Arias, Borja
    Kopanakis, Georgios
    Scheffknecht, Guenter
    Carlos Abanades, Juan
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2011, 50 (16) : 9685 - 9695