Interlayer and Phase Engineering Modifications of K-MoS2@C Nanoflowers for High-Performance Degradable Zn-Ion Batteries

被引:12
|
作者
Li, Fengfeng [1 ]
Ma, Hongyun [1 ]
Sheng, Hongwei [1 ]
Wang, Zhaopeng [2 ]
Qi, Yifeng [1 ]
Wan, Daicao [2 ]
Shao, Mingjiao [1 ]
Yuan, Jiao [1 ,3 ]
Li, Wenquan [3 ]
Wang, Kairong [2 ]
Xie, Erqing [1 ]
Lan, Wei [1 ]
机构
[1] Lanzhou Univ, Sch Phys Sci & Technol, Lanzhou 730000, Gansu, Peoples R China
[2] Lanzhou Univ, Chinese Acad Med Sci 2019RU066, Sch Basic Med Sci, Key Lab Preclin Study New Drugs Gansu Prov,Res Uni, Lanzhou 730000, Gansu, Peoples R China
[3] Qinghai Normal Univ, Sch Phys & Elect Informat Engn, Xining 810008, Qinghai, Peoples R China
基金
中国国家自然科学基金;
关键词
aqueous zinc-ion battery; degradable; interlayer engineering; MoS2; redox active; ZINC; CHALLENGES; NANOSHEETS; CAPACITY; CATHODE; MOS2;
D O I
10.1002/smll.202306276
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
2D transition metal dichalcogenides (TMDs) have garnered significant interest as cathode materials for aqueous zinc-ion batteries (AZIBs) due to their open transport channels and abundant Zn2+ intercalation sites. However, unmodified TMDs exhibit low electrochemical activity and poor kinetics owing to the high binding energy and large hydration radius of divalent Zn2+. To overcome these limitations, an interlayer engineering strategy is proposed where K+ is preintercalated into K-MoS2 nanosheets, which then undergo in situ growth on carbon nanospheres (denoted as K-MoS2@C nanoflowers). This strategy stimulates in-plane redox-active sites, expands the interlayer spacing (from 6.16 to 9.42 & Aring;), and induces the formation of abundant MoS2 1T-phase. The K-MoS2@C cathode demonstrates excellent redox activity and fast kinetics, attributed to the potassium ions acting as a structural "stabilizer" and an electrostatic interaction "shield," accelerating charge transfer, promoting Zn2+ diffusion, and ensuring structural stability. Meanwhile, the carbon nanospheres serve as a 3D conductive network for Zn2+ and enhance the cathode's hydrophilicity. More significantly, the outstanding electrochemical performance of K-MoS2@C, along with its superior biocompatibility and degradability of its related components, can enable an implantable energy supply, providing novel opportunities for the application of transient electronics.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Edge-Enriched MoS2 as a High-Performance Cathode for Aqueous Zn-Ion Batteries
    Niu, Mengfan
    Wan, Falian
    Xin, Wenli
    Zhang, Lei
    Xiao, Xilin
    Zhang, Hui
    Yan, Zichao
    Zhu, Zhiqiang
    BATTERIES & SUPERCAPS, 2025, 8 (02)
  • [2] Self-assembled MoS2/C nanoflowers with expanded interlayer spacing as a high-performance anode for sodium ion batteries
    Yuxiang Luo
    Pei Zhang
    Xunhui Xiong
    Haikuo Fu
    ChineseJournalofChemicalEngineering, 2021, 39 (11) : 240 - 246
  • [3] Self-assembled MoS2/C nanoflowers with expanded interlayer spacing as a high-performance anode for sodium ion batteries
    Luo, Yuxiang
    Zhang, Pei
    Xiong, Xunhui
    Fu, Haikuo
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2021, 39 : 240 - 246
  • [4] Vertically aligned 1 T phase MoS2 nanosheet array for high-performance rechargeable aqueous Zn-ion batteries
    Liu, Jiapeng
    Gong, Ning
    Peng, Wenchao
    Li, Yang
    Zhang, Fengbao
    Fan, Xiaobin
    CHEMICAL ENGINEERING JOURNAL, 2022, 428
  • [5] K-preintercalated MnO2 nanosheets as cathode for high-performance Zn-ion batteries
    Li, Xiaomeng
    Qu, Jiaqi
    Xu, Junmin
    Zhang, Sen
    Wang, Xiaoxia
    Wang, Xinchang
    Dai, Shuge
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2021, 895
  • [6] Boosting the Zn-ion transfer kinetics to stabilize the Zn metal interface for high-performance rechargeable Zn-ion batteries
    Hong, Lin
    Wu, Xiuming
    Ma, Chao
    Huang, Wei
    Zhou, Yongfeng
    Wang, Kai-Xue
    Chen, Jie-Sheng
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (31) : 16814 - 16823
  • [7] MoS2 nanosheets with expanded interlayer spacing for rechargeable aqueous Zn-ion batteries
    Li, Hongfei
    Yang, Qi
    Mo, Funian
    Liang, Guojin
    Liu, Zhuoxin
    Tang, Zijie
    Ma, Longtao
    Liu, Jun
    Shi, Zhicong
    Zhi, Chunyi
    ENERGY STORAGE MATERIALS, 2019, 19 : 94 - 101
  • [8] A High-Performance Alginate Hydrogel Binder for Aqueous Zn-Ion Batteries
    Xie, Dongmei
    Zhao, Jiachang
    Jiang, Qiong
    Wang, Hao
    Huang, Haiji
    Rao, Pinhua
    Mao, Jianfeng
    CHEMPHYSCHEM, 2022, 23 (17)
  • [9] Mesoporous VCN Nanobelts for High-Performance Flexible Zn-Ion Batteries
    Zhou, Zeyan
    Zeng, Taotao
    Zhang, Haoran
    Chen, Ding
    ENERGIES, 2022, 15 (13)
  • [10] A triflate porous layer stabilizing Zn anodes for high-performance Zn-ion batteries
    Rao, Ruijun
    Chen, Jingtao
    Bai, Mengxi
    Li, Qiufen
    Wang, Xiang
    Li, Jiashuai
    Li, Dongze
    Lin, Xiaoyan
    Shao, Siyuan
    Wang, Ziqi
    CHEMICAL COMMUNICATIONS, 2025, 61 (03) : 492 - 495