Explainable efficient and optimized feature fusion network for surface defect detection

被引:9
|
作者
Sundarrajan, Kavitha [1 ]
Rajendran, Baskaran Kuttuva [2 ]
机构
[1] Kumaraguru Coll Technol, Dept Informat Technol, Coimbatore 641049, India
[2] Kumaraguru Coll Technol, Dept Comp Sci & Engn, Coimbatore 641049, India
关键词
Hot-rolled strip steel; Transfer learning; Deep learning model; Feature fusion network (FFN); Vgg16; Inceptionv3; Resnet50; Feature extraction; Image classification; Explainable artificial intelligence (XAI); Particle swarm optimization algorithm; ROLLED STEEL STRIPS; CLASSIFICATION;
D O I
10.1007/s00170-023-11789-0
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The quality of the surface and plate form of hot-rolled strip steel, a crucial raw material to produce automobiles, household appliances, and other goods greatly influences the final products that end users make. The identification of surface flaws is crucial to the manufacture of steel strips. Furthermore, typical fault identification techniques have issue of poor detecting reliability, and lower accuracy is obtained by the explainable single pre-trained networks which led to the development of the feature fusion network (FFN). The major objective of the work is to design a traditional deep network model is enhanced by the application of a transfer learning model to detect surface flaws in steel strips. The use of pre-trained models reduces negative effects by drastically reducing training time and improving the accuracy of image classification. Transfer learning models such as VGG16, InceptionV3, and ResNet50 are used to train the Northeastern University-DETection (NEU-DET) Dataset which significantly reduces the time for the training. Generative adversarial network is used for data augmentation to increase the input images. An explainable artificial intelligence (XAI) classifier is applied to the pre-trained networks to understand the classification of the surface defects. A hybrid FFN (HFFN) is proposed which combines the features of pre-trained networks (VGG16, InceptionV3, and ResNet50) to accurately classify flaws in the hot-rolled strips surface. To reduce the features in the HFFN, particle swarm optimization (PSO) algorithm (PFFN) is used. On the NEU-DET, FFN by three-pre-trained model achieves 98.65%, 98.42%, 98.51%, and 98.54% for precision, recall, f-score, and accuracy respectively.
引用
收藏
页数:18
相关论文
共 50 条
  • [11] A bilateral feature fusion network for defect detection on mobile cameras
    Liu, Cong
    She, Wenhao
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2024, 46 (01) : 2585 - 2594
  • [12] MSFF: A Multi-Scale Feature Fusion Network for Surface Defect Detection of Aluminum Profiles
    Sun, Lianshan
    Wei, Jingxue
    Du, Hanchao
    Zhang, Yongbin
    He, Lifeng
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2022, E105D (09) : 1652 - 1655
  • [13] TAFFNet: Two-Stage Attention-Based Feature Fusion Network for Surface Defect Detection
    Cao, Jingang
    Yang, Guotian
    Yang, Xiyun
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2022, 94 (12): : 1531 - 1544
  • [14] TAFFNet: Two-Stage Attention-Based Feature Fusion Network for Surface Defect Detection
    Jingang Cao
    Guotian Yang
    Xiyun Yang
    Journal of Signal Processing Systems, 2022, 94 : 1531 - 1544
  • [15] A Lightweight Multiscale Feature Fusion Network for Solar Cell Defect Detection
    Chen, Xiaoyun
    Zhang, Lanyao
    Chen, Xiaoling
    Cen, Yigang
    Zhang, Linna
    Zhang, Fugui
    CMC-COMPUTERS MATERIALS & CONTINUA, 2025, 82 (01): : 521 - 542
  • [16] Cross-layer fusion feature network for material defect detection
    Yang, Kai
    Sun, Zhiyi
    Wang, Anhong
    Liu, Ruizhen
    Liu, Liqun
    Wang, Yin
    JOURNAL OF ELECTRONIC IMAGING, 2019, 28 (03)
  • [17] IFIFusion: A independent feature information fusion model for surface defect detection
    Zhou, Xin
    Zhang, Yongchao
    Liu, Zheng
    Jiang, Zeyu
    Ren, Zhaohui
    Mi, Tianchuan
    Zhou, Shihua
    INFORMATION FUSION, 2025, 120
  • [18] A Surface Defect Detection Method Based on Multi-Feature Fusion
    Wu, Xiaojun
    Xiong, Huijiang
    Yu, Zhiyang
    Wen, Peizhi
    NINTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2017), 2017, 10420
  • [19] PGA-Net: Pyramid Feature Fusion and Global Context Attention Network for Automated Surface Defect Detection
    Dong, Hongwen
    Song, Kechen
    He, Yu
    Xu, Jing
    Yan, Yunhui
    Meng, Qinggang
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (12) : 7448 - 7458
  • [20] Surface Defect Detection Method for Industrial Products Based on Photometric Stereo and Dual Stream Feature Fusion Network
    Hu, Guanghua
    Tu, Qianxi
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2024, 52 (10): : 112 - 123