Existence of nontrivial solutions to fractional Kirchhoff double phase problems

被引:7
|
作者
Sousa, J. Vanterler da C. [1 ]
机构
[1] Univ Estadual Maranhao, Dept Math, Aerosp Engn, PPGEA UEMA,DEMATI, BR-65054 Sao Luis, Maranhao, Brazil
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2024年 / 43卷 / 02期
关键词
Double phase operator; Fractional Kirchhoff type equation; Multiple solution; Variable exponents; Variational methods; P-LAPLACIAN; EQUATIONS;
D O I
10.1007/s40314-024-02599-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this present paper, we concern the discussion of multiplicity non-trivial solution for a new class of fractional differential equations of the Kirchhoff type in the psi-fractional space S-H,0(alpha,beta,psi) (Lambda) via critical point result and variational methods.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Multiple results on nontrivial solutions of discrete Kirchhoff type problems
    Yuhua Long
    Journal of Applied Mathematics and Computing, 2023, 69 : 1 - 17
  • [42] Existence of Positive Solutions to a Fractional-Kirchhoff System
    Peng-fei LI
    Jun-hui XIE
    Dan MU
    Acta Mathematicae Applicatae Sinica, 2024, 40 (01) : 225 - 240
  • [43] Existence of solutions for a class of fractional Kirchhoff variational inequality
    Deng, Shenbing
    Luo, Wenshan
    Ledesma, Cesar E. Torres
    Quiroz, George W. Alama
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2024, 43 (1-2): : 149 - 168
  • [44] Existence of Positive Solutions to a Fractional-Kirchhoff System
    Peng-fei Li
    Jun-hui Xie
    Dan Mu
    Acta Mathematicae Applicatae Sinica, English Series, 2024, 40 : 225 - 240
  • [45] The existence of normalized solutions to the fractional Kirchhoff equation with potentials
    Ji, Peng
    Chen, Fangqi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 546 (02)
  • [46] Existence of nontrivial solutions for Schrodinger-Kirchhoff type equations involving the fractional p-Laplacian and local nonlinearity
    Gao, Liu
    Chen, Chunfang
    Chen, Jianhua
    Zhu, Chuanxi
    AIMS MATHEMATICS, 2021, 6 (02): : 1332 - 1347
  • [47] Existence and non-existence results for fractional Kirchhoff Laplacian problems
    Nemat Nyamoradi
    Vincenzo Ambrosio
    Analysis and Mathematical Physics, 2021, 11
  • [48] Existence and non-existence results for fractional Kirchhoff Laplacian problems
    Nyamoradi, Nemat
    Ambrosio, Vincenzo
    ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (03)
  • [49] Existence of Positive Solutions to a Fractional-Kirchhoff System
    Li, Peng-fei
    Xie, Jun-hui
    Mu, Dan
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2024, 40 (01): : 225 - 240
  • [50] Existence of weak solutions for Kirchhoff type double-phase problem in RN
    Arora, Anupma
    Dwivedi, Gaurav
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (06) : 4734 - 4755