Artificial intelligence in radiation oncology Target volume definition and organ segmentation

被引:0
|
作者
Peeken, J. C. [1 ,2 ,3 ]
Combs, S. E. [1 ]
机构
[1] Tech Univ Munich, Klinikum Rechts Isar, Klin & Poliklin RadioOnkol & Strahlentherapie, Ismaninger Str 22, D-81675 Munich, Germany
[2] Tech Univ Munich, Inst Strahlenmed, Klinikum Rechts Isar, Arbeitsgrp Kunstl Intelligenz & Radi Radioonkol, Munich, Germany
[3] Klinik & Poliklin RadioOnkol & Strahlentherapie, Klinikum Rechts Isar, Tech Univ MunchenIsmaninger Str 22, D-81675 Munich, Germany
来源
ONKOLOGIE | 2023年 / 29卷 / 10期
关键词
Machine learning; Algorithms; Radiotherapy; Deep learning; Precision medicine; AUTO-SEGMENTATION; CANCER; DELINEATION; MODELS; RISK;
D O I
10.1007/s00761-023-01351-8
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Target volume definition is a central component of radiation planning in radiation oncology. In addition to anatomical organs that are in close proximity to the irradiated target region, target volume definition is a relevant part of a radiation oncologist's medical practice. Advances in the development of artificial intelligence (AI) have produced neural networks that can be used highly effectively to segment medical image data. Aim: To analyze the potential of AI-based autocontouring in radiation planning. The article presents the body of scientific work, existing software solutions and an outlook on future innovative solutions. Materials and methods: A literature search (PubMed) was performed to identify relevant literature. Results: The first approved software solutions allow automated contouring of anatomical organs. The segmentation quality for many organs is high, while certain positionally variable structures or particularly small organs still requiremore substantial corrections. The definition of clinical target volumes, e.g., in terms of local lymphatic drainage, achieve good reproducibility. For a variety of tumors, it has also been shown that neural networks can effectively and reproducibly define the gross tumor volume. Further developments, such as tumor growthmodels, may provide novel individualized definitions of target volumes. Conclusion: AI models for autocontouring have the potential to accelerate the work of radiation oncologists through partial automation and reducing staff time, while achieving increased standardization.
引用
收藏
页码:876 / 882
页数:7
相关论文
共 50 条
  • [11] Artificial Intelligence in Radiation Oncology Imaging
    Thompson, Reid F.
    Valdes, Gilmer
    Fuller, Clifton David
    Carpenter, Colin M.
    Morin, Olivier
    Aneja, Sanjay
    Lindsay, William D.
    Aerts, Hugo J. W. L.
    Agrimson, Barbara
    Deville, Curtiland, Jr.
    Rosenthal, Seth A.
    Yu, James B.
    Thomas, Charles R., Jr.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2018, 102 (04): : 1159 - 1161
  • [12] Target volume definition and organ motion for IMRT
    Nuyttens, J. J.
    EJC SUPPLEMENTS, 2005, 3 (02): : 22 - 22
  • [13] Target volume definition in radiation therapy
    VanKampen, M
    Levegrun, S
    Wannenmacher, M
    BRITISH JOURNAL OF RADIOLOGY, 1997, 70 : S25 - S31
  • [14] Editorial: Automation and artificial intelligence in radiation oncology
    Cilla, Savino
    Barajas, Jose Eduardo Villarreal
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [15] The role of artificial intelligence in veterinary radiation oncology
    Leary, Del
    Basran, Parminder S. S.
    VETERINARY RADIOLOGY & ULTRASOUND, 2022, 63 : 903 - 912
  • [16] Artificial Intelligence for Image Registration in Radiation Oncology
    Teuwen, Jonas
    Gouw, Zeno A. R.
    Sonke, Jan-Jakob
    SEMINARS IN RADIATION ONCOLOGY, 2022, 32 (04) : 330 - 342
  • [17] Interpretable artificial intelligence in radiology and radiation oncology
    Cui, Sunan
    Traverso, Alberto
    Niraula, Dipesh
    Zou, Jiaren
    Luo, Yi
    Owen, Dawn
    El Naqa, Issam
    Wei, Lise
    BRITISH JOURNAL OF RADIOLOGY, 2023, 96 (1150):
  • [18] Ethical Aspects of Artificial Intelligence in Radiation Oncology
    Lahmi, Lucien
    Mamzer, Marie-France
    Burgun, Anita
    Durdux, Catherine
    Bibault, Jean -Emmanuel
    SEMINARS IN RADIATION ONCOLOGY, 2022, 32 (04) : 442 - 448
  • [19] PITFALLS OF PET IMAGING FOR TARGET DEFINITION IN RADIATION ONCOLOGY
    Lee, J.
    Geets, X.
    Gregoire, V.
    Boll, A.
    RADIOTHERAPY AND ONCOLOGY, 2008, 88 : S135 - S135
  • [20] Fully automated segmentation of the brain resection cavity for radiation target volume definition in glioblastoma patients
    Herrmann, E.
    Ermis, E.
    Meier, R.
    Blatti-Moreno, M.
    Knecht, U. P.
    Aebersold, D. M.
    Manser, P.
    Reyes, M.
    STRAHLENTHERAPIE UND ONKOLOGIE, 2019, 195 (06) : 586 - 586