Artificial intelligence in radiation oncology Target volume definition and organ segmentation

被引:0
|
作者
Peeken, J. C. [1 ,2 ,3 ]
Combs, S. E. [1 ]
机构
[1] Tech Univ Munich, Klinikum Rechts Isar, Klin & Poliklin RadioOnkol & Strahlentherapie, Ismaninger Str 22, D-81675 Munich, Germany
[2] Tech Univ Munich, Inst Strahlenmed, Klinikum Rechts Isar, Arbeitsgrp Kunstl Intelligenz & Radi Radioonkol, Munich, Germany
[3] Klinik & Poliklin RadioOnkol & Strahlentherapie, Klinikum Rechts Isar, Tech Univ MunchenIsmaninger Str 22, D-81675 Munich, Germany
来源
ONKOLOGIE | 2023年 / 29卷 / 10期
关键词
Machine learning; Algorithms; Radiotherapy; Deep learning; Precision medicine; AUTO-SEGMENTATION; CANCER; DELINEATION; MODELS; RISK;
D O I
10.1007/s00761-023-01351-8
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Target volume definition is a central component of radiation planning in radiation oncology. In addition to anatomical organs that are in close proximity to the irradiated target region, target volume definition is a relevant part of a radiation oncologist's medical practice. Advances in the development of artificial intelligence (AI) have produced neural networks that can be used highly effectively to segment medical image data. Aim: To analyze the potential of AI-based autocontouring in radiation planning. The article presents the body of scientific work, existing software solutions and an outlook on future innovative solutions. Materials and methods: A literature search (PubMed) was performed to identify relevant literature. Results: The first approved software solutions allow automated contouring of anatomical organs. The segmentation quality for many organs is high, while certain positionally variable structures or particularly small organs still requiremore substantial corrections. The definition of clinical target volumes, e.g., in terms of local lymphatic drainage, achieve good reproducibility. For a variety of tumors, it has also been shown that neural networks can effectively and reproducibly define the gross tumor volume. Further developments, such as tumor growthmodels, may provide novel individualized definitions of target volumes. Conclusion: AI models for autocontouring have the potential to accelerate the work of radiation oncologists through partial automation and reducing staff time, while achieving increased standardization.
引用
收藏
页码:876 / 882
页数:7
相关论文
共 50 条
  • [1] Artificial Intelligence in Radiation Oncology
    Deig, Christopher R.
    Kanwar, Aasheesh
    Thompson, Reid F.
    HEMATOLOGY-ONCOLOGY CLINICS OF NORTH AMERICA, 2019, 33 (06) : 1095 - +
  • [2] Artificial intelligence in radiation oncology
    Elizabeth Huynh
    Ahmed Hosny
    Christian Guthier
    Danielle S. Bitterman
    Steven F. Petit
    Daphne A. Haas-Kogan
    Benjamin Kann
    Hugo J. W. L. Aerts
    Raymond H. Mak
    Nature Reviews Clinical Oncology, 2020, 17 : 771 - 781
  • [3] Artificial intelligence in radiation oncology
    Huynh, Elizabeth
    Hosny, Ahmed
    Guthier, Christian
    Bitterman, Danielle S.
    Petit, Steven E.
    Haas-Kogan, Daphne A.
    Kann, Benjamin
    Aert, Hugo J. W. L.
    Mak, Raymond H.
    NATURE REVIEWS CLINICAL ONCOLOGY, 2020, 17 (12) : 771 - 781
  • [4] Anwendung künstlicher Intelligenz in der RadioonkologieZielvolumendefinition und OrgansegmentierungArtificial intelligence in radiation oncologyTarget volume definition and organ segmentation
    J. C. Peeken
    S. E. Combs
    Die Onkologie, 2023, 29 (10) : 876 - 882
  • [5] Artificial intelligence applied to radiation oncology
    Bibault, J. -E.
    Burgun, A.
    Giraud, P.
    CANCER RADIOTHERAPIE, 2017, 21 (03): : 256 - +
  • [7] Artificial intelligence and radiomics for radiation oncology
    Martin Kocher
    Strahlentherapie und Onkologie, 2020, 196 : 847 - 847
  • [8] The Future of Artificial Intelligence in Radiation Oncology
    Thompson, Reid F.
    Valdes, Gilmer
    Fuller, Clifton David
    Carpenter, Colin M.
    Morin, Olivier
    Aneja, Sanjay
    Lindsay, William D.
    Aerts, Hugo J. W. L.
    Agrimson, Barbara
    Deville, Curtiland
    Rosenthal, Seth A.
    Yu, James B.
    Thomas, Charles R., Jr.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2018, 102 (02): : 247 - 248
  • [9] Responsible Artificial Intelligence in Radiation Oncology
    Teng, C. L.
    Bhullar, A. S.
    Jermain, P.
    Jordon, D.
    Nawfel, R.
    Patel, P.
    Sean, R.
    Shang, M.
    Wu, D. H.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2024, 120 (02): : E659 - E659
  • [10] Artificial Intelligence Applications in Radiation Oncology
    Dinapoli, N.
    Lenkowicz, J.
    Masciocchi, C.
    Damiani, A.
    Boldrini, L.
    Cusumano, D.
    Valentini, V.
    RADIOTHERAPY AND ONCOLOGY, 2019, 133 : S1 - S1