Crack identification using electrical impedance tomography and transfer learning

被引:8
|
作者
Quqa, Said [1 ,2 ,4 ]
Landi, Luca [1 ]
Loh, Kenneth J. [2 ,3 ,5 ]
机构
[1] Univ Bologna, Dept Civil Chem Environm & Mat Engn, Bologna, Italy
[2] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA USA
[3] Univ Calif San Diego, Act Respons Multifunct & Ordered Mat Res ARMOR Lab, La Jolla, CA USA
[4] Univ Bologna, Dept Civil Chem Environm & Mat Engn, Vialedel Risorgimento 2, I-40136 Bologna, Italy
[5] Univ Calif San Diego, Dept Struct Engn, 9500 Gilman Dr MC 0085, La Jolla, CA 92093 USA
关键词
DAMAGE DETECTION; SENSING SKIN; STRAIN; ELEMENTS;
D O I
10.1111/mice.13043
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Sensing skins and electrical impedance tomography constitute a convenient and inexpensive alternative to dense sensor networks for distributed sensing in civil structures. However, their performance can deteriorate with the aging of the sensing film. Guaranteeing high identification performance after minor lesions is crucial to improving their ability to identify structural damage. In this paper, electrical resistance tomography is used to identify the crack locations in nanocomposite paint sprayed onto structural components. The main novelty consists of using crack annotations collected during visual inspections to improve the crack identification performance of deep neural networks trained using simulated datasets through transfer learning. Transfer component analysis is employed for simulation-to-real information transfer and applied at a population level, extracting low-dimensional domain-invariant features shared by simulated models and structures with similar geometry. The results show that the proposed method outperforms traditional approaches for crack localization in complex damage patterns.
引用
收藏
页码:2426 / 2442
页数:17
相关论文
共 50 条
  • [21] Deep learning correction for image reconstruction in electrical impedance tomography using UNet model
    Maciura, Lukasz
    Rymarczyk, Tomasz
    Wojcik, Dariusz
    Gauda, Konrad
    Kowalski, Marcin
    PRZEGLAD ELEKTROTECHNICZNY, 2023, 99 (06): : 134 - 137
  • [22] ADAPTIVE MESHING APPROACH TO IDENTIFICATION OF CRACKS WITH ELECTRICAL IMPEDANCE TOMOGRAPHY
    Karhunen, Kimmo
    Seppanen, Aku
    Kaipio, Jari P.
    INVERSE PROBLEMS AND IMAGING, 2014, 8 (01) : 127 - 148
  • [23] Electrical impedance tomography
    Lobo, Beatriz
    Hermosa, Cecilia
    Abella, Ana
    Gordo, Federico
    ANNALS OF TRANSLATIONAL MEDICINE, 2018, 6 (02)
  • [24] Electrical impedance tomography
    Saulnier, GJ
    Blue, RS
    Newell, JC
    Isaacson, D
    Edic, PM
    IEEE SIGNAL PROCESSING MAGAZINE, 2001, 18 (06) : 31 - 43
  • [25] Electrical impedance tomography
    Cheney, M
    Isaacson, D
    Newell, JC
    SIAM REVIEW, 1999, 41 (01) : 85 - 101
  • [26] Electrical impedance tomography
    Kotre, CJ
    BRITISH JOURNAL OF RADIOLOGY, 1997, 70 : S200 - S205
  • [27] Electrical Impedance Tomography
    Hinz, Jose
    CURRENT RESPIRATORY MEDICINE REVIEWS, 2009, 5 (02) : 105 - 109
  • [28] Electrical impedance tomography
    Borcea, L
    INVERSE PROBLEMS, 2002, 18 (06) : R99 - R136
  • [29] Electrical impedance tomography
    Costa, Eduardo L. V.
    Lima, Raul Gonzalez
    Amato, Marcelo B. P.
    CURRENT OPINION IN CRITICAL CARE, 2009, 15 (01) : 18 - 24
  • [30] Study on human brain impedance imaging using electrical impedance tomography
    Xu, GZ
    Dong, GY
    Yan, WL
    Yang, QX
    PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON ELECTROMAGNETIC FIELD PROBLEMS AND APPLICATIONS, 2000, : 378 - 380