Crack identification using electrical impedance tomography and transfer learning

被引:8
|
作者
Quqa, Said [1 ,2 ,4 ]
Landi, Luca [1 ]
Loh, Kenneth J. [2 ,3 ,5 ]
机构
[1] Univ Bologna, Dept Civil Chem Environm & Mat Engn, Bologna, Italy
[2] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA USA
[3] Univ Calif San Diego, Act Respons Multifunct & Ordered Mat Res ARMOR Lab, La Jolla, CA USA
[4] Univ Bologna, Dept Civil Chem Environm & Mat Engn, Vialedel Risorgimento 2, I-40136 Bologna, Italy
[5] Univ Calif San Diego, Dept Struct Engn, 9500 Gilman Dr MC 0085, La Jolla, CA 92093 USA
关键词
DAMAGE DETECTION; SENSING SKIN; STRAIN; ELEMENTS;
D O I
10.1111/mice.13043
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Sensing skins and electrical impedance tomography constitute a convenient and inexpensive alternative to dense sensor networks for distributed sensing in civil structures. However, their performance can deteriorate with the aging of the sensing film. Guaranteeing high identification performance after minor lesions is crucial to improving their ability to identify structural damage. In this paper, electrical resistance tomography is used to identify the crack locations in nanocomposite paint sprayed onto structural components. The main novelty consists of using crack annotations collected during visual inspections to improve the crack identification performance of deep neural networks trained using simulated datasets through transfer learning. Transfer component analysis is employed for simulation-to-real information transfer and applied at a population level, extracting low-dimensional domain-invariant features shared by simulated models and structures with similar geometry. The results show that the proposed method outperforms traditional approaches for crack localization in complex damage patterns.
引用
收藏
页码:2426 / 2442
页数:17
相关论文
共 50 条
  • [1] Experimental crack identification using electrical impedance tomography
    Lazarovitch, R
    Rittel, D
    Bucher, I
    NDT & E INTERNATIONAL, 2002, 35 (05) : 301 - 316
  • [2] Classification of Electrical Impedance Tomography Data Using Machine Learning
    Pessoa, Diogo
    Rocha, Bruno Machado
    Cheimariotis, Grigorios-Aris
    Haris, Kostas
    Strodthoff, Claas
    Kaimakamis, Evangelos
    Maglaveras, Nicos
    Frerichs, Inez
    de Carvalho, Paulo
    Paiva, Rui Pedro
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 349 - 353
  • [3] Learning Nonlinear Electrical Impedance Tomography
    Colibazzi, Francesco
    Lazzaro, Damiana
    Morigi, Serena
    Samore, Andrea
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 90 (01)
  • [4] Learning Nonlinear Electrical Impedance Tomography
    Francesco Colibazzi
    Damiana Lazzaro
    Serena Morigi
    Andrea Samoré
    Journal of Scientific Computing, 2022, 90
  • [5] Piezoresistive nanocomposite sensing using electrical impedance tomography and machine learning
    Alawy, A.
    Mostaghimi, H.
    Amani, S.
    Rezvani, S.
    Park, S. S.
    SENSORS AND ACTUATORS A-PHYSICAL, 2024, 377
  • [6] Electrode Placement Optimization for Electrical Impedance Tomography Using Active Learning
    Lee, Junhyeong
    Park, Kyungseo
    Park, Kundo
    Kim, Yongtae
    Kim, Jung
    Ryu, Seunghwa
    ADVANCED ENGINEERING MATERIALS, 2024, 26 (11)
  • [7] Hybrid machine learning in electrical impedance tomography
    Rymarczyk, Tomasz
    Klosowski, Grzegorz
    Guzik, Miroslaw
    Niderla, Konrad
    Lipski, Jerzy
    PRZEGLAD ELEKTROTECHNICZNY, 2021, 97 (12): : 169 - 172
  • [8] Solving electrical impedance tomography with deep learning
    Fan, Yuwei
    Ying, Lexing
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 404
  • [9] Image Reconstruction Using Supervised Learning in Wearable Electrical Impedance Tomography of the Thorax
    Ivanenko, Mikhail
    Smolik, Waldemar T.
    Wanta, Damian
    Midura, Mateusz
    Wroblewski, Przemyslaw
    Hou, Xiaohan
    Yan, Xiaoheng
    SENSORS, 2023, 23 (18)
  • [10] Tactile Sensing Using Machine Learning-Driven Electrical Impedance Tomography
    Husain, Zainab
    Madjid, Nadya Abdel
    Liatsis, Panos
    IEEE SENSORS JOURNAL, 2021, 21 (10) : 11628 - 11642