InLIOM: Tightly-Coupled Intensity LiDAR Inertial Odometry and Mapping

被引:1
|
作者
Wang, Hanqi [1 ,2 ]
Liang, Huawei [1 ,3 ,4 ]
Li, Zhiyuan [1 ,2 ]
Zheng, Xiaokun [1 ,2 ]
Xu, Haitao [1 ,3 ,4 ]
Zhou, Pengfei [1 ,3 ,4 ]
Kong, Bin [1 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Hefei Inst Phys Sci, Hefei 230031, Peoples R China
[2] Univ Sci & Technol China USTC, Hefei 230026, Peoples R China
[3] Anhui Engn Lab Intelligent Driving Technol & Appli, Hefei 230031, Peoples R China
[4] Chinese Acad Sci, Innovat Res Inst Robot & Intelligent Mfg, Hefei 230031, Peoples R China
关键词
Autonomous vehicles; mapping; intensity LiDAR odometry; tightly-coupled fusion; indoor and outdoor environments; ROBUST; LIO;
D O I
10.1109/TITS.2024.3370235
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
State estimation and mapping are vital prerequisites for autonomous vehicle intelligent navigation. However, maintaining high accuracy in urban environments remains challenging, especially when the satellite signal is unavailable. This paper proposes a novel framework, InLIOM, which tightly couples LiDAR intensity measurements into the system to improve mapping performance in various challenging environments. The proposed framework introduces a stable intensity LiDAR odometry based on scan-to-scan optimization. By extracting features pairwise from intensity information of consecutive frames, this method tackles the instability issue of LiDAR intensity. To ensure the odometry's robustness, a training-free residual-based dynamic objects filter module is further integrated into the scan-to-scan registration process. The obtained intensity LiDAR odometry solution is incorporated into the factor graph with other multi-sensors relative and absolute measurements, obtaining global optimization estimation. Experiments in indoor and outdoor urban environments show that the proposed framework achieves superior accuracy to state-of-the-art methods. Our approach can robustly adapt to high-dynamic roads, tunnels, underground parking, and large-scale urban scenarios.
引用
收藏
页码:11821 / 11832
页数:12
相关论文
共 50 条
  • [11] Tightly Coupled LiDAR-Inertial Odometry and Mapping for Underground Environments
    Chen, Jianhong
    Wang, Hongwei
    Yang, Shan
    SENSORS, 2023, 23 (15)
  • [12] A ZUPT Aided Initialization Procedure for Tightly-coupled Lidar Inertial Odometry based SLAM System
    Gui, Linqiu
    Zeng, Chunnian
    Dauchert, Samuel
    Luo, Jie
    Wang, Xiaofeng
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2023, 108 (03)
  • [13] A ZUPT Aided Initialization Procedure for Tightly-coupled Lidar Inertial Odometry based SLAM System
    Linqiu Gui
    Chunnian Zeng
    Samuel Dauchert
    Jie Luo
    Xiaofeng Wang
    Journal of Intelligent & Robotic Systems, 2023, 108
  • [14] Tightly-Coupled LiDAR-inertial Odometry for Wheel-based Skid Steering UGV
    Li, Mengkai
    Wang, Lei
    Ren, Wenhu
    Liu, Qi
    Liu, Chaoyang
    2022 IEEE 17TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2022, : 510 - 516
  • [15] LIMOT: A Tightly-Coupled System for LiDAR-Inertial Odometry and Multi-Object Tracking
    Zhu, Zhongyang
    Zhao, Junqiao
    Huang, Kai
    Tian, Xuebo
    Lin, Jiaye
    Ye, Chen
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (07): : 6600 - 6607
  • [16] RI-LIO: Reflectivity Image Assisted Tightly-Coupled LiDAR-Inertial Odometry
    Zhang, Yanfeng
    Tian, Yunong
    Wang, Wanguo
    Yang, Guodong
    Li, Zhishuo
    Jing, Fengshui
    Tan, Min
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (03) : 1802 - 1809
  • [17] Visual-inertial odometry based on tightly-coupled encoder
    Hu, Zhangfang
    Guo, Zhenqian
    Luo, Yuan
    Chen, Jian
    OPTOELECTRONIC IMAGING AND MULTIMEDIA TECHNOLOGY IX, 2022, 12317
  • [18] Fast and Robust LiDAR-Inertial Odometry by Tightly-Coupled Iterated Kalman Smoother and Robocentric Voxels
    Liu, Jun
    Zhang, Yunzhou
    Zhao, Xiaoyu
    He, Zhengnan
    Liu, Wei
    Lv, Xiangren
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (10) : 14486 - 14496
  • [19] LIO-LOT: Tightly-Coupled Multi-Object Tracking and LiDAR-Inertial Odometry
    Li, Xingxing
    Yan, Zhuohao
    Feng, Shaoquan
    Xia, Chunxi
    Li, Shengyu
    Zhou, Yuxuan
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2025, 26 (01) : 742 - 756
  • [20] iG-LIO: An Incremental GICP-Based Tightly-Coupled LiDAR-Inertial Odometry
    Chen, Zijie
    Xu, Yong
    Yuan, Shenghai
    Xie, Lihua
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (02) : 1883 - 1890