Logarithmic Vertex Algebras and Non-local Poisson Vertex Algebras

被引:0
|
作者
Bakalov, Bojko [1 ]
Villarreal, Juan J. [2 ]
机构
[1] North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[2] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
基金
英国科研创新办公室;
关键词
D O I
10.1007/s00220-023-04839-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Logarithmic vertex algebras were introduced in our previous paper, motivated by logarithmic conformal field theory (Bakalov and Villarreal in Logarithmic vertex algebras, 2022). Non-local Poisson vertex algebras were introduced by De Sole and Kac, motivated by the theory of integrable systems (De Sole and Kac in Jpn J Math 8:233-347, 2013). We prove that the associated graded vector space of any filtered logarithmic vertex algebra has an induced structure of a non-local Poisson vertex algebra. We use this relation to obtain new examples of both logarithmic vertex algebras and non-local Poisson vertex algebras.
引用
收藏
页码:185 / 226
页数:42
相关论文
共 50 条
  • [31] Strongly graded vertex algebras generated by vertex Lie algebras
    Pei, Yufeng
    Yang, Jinwei
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (08)
  • [32] Deforming vertex algebras by vertex bialgebras
    Jing, Naihuan
    Kong, Fei
    Li, Haisheng
    Tan, Shaobin
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2024, 26 (01)
  • [33] Computation of cohomology of Lie conformal and Poisson vertex algebras
    Bojko Bakalov
    Alberto De Sole
    Victor G. Kac
    Selecta Mathematica, 2020, 26
  • [34] Computation of cohomology of Lie conformal and Poisson vertex algebras
    Bakalov, Bojko
    De Sole, Alberto
    Kac, Victor G.
    SELECTA MATHEMATICA-NEW SERIES, 2020, 26 (04):
  • [35] A new construction of vertex algebras and quasi-modules for vertex algebras
    Li, HS
    ADVANCES IN MATHEMATICS, 2006, 202 (01) : 232 - 286
  • [36] Vertex algebroids and conformal vertex algebras associated with simple Leibniz algebras
    Thuy Bui
    Yamskulna, Gaywalee
    JOURNAL OF ALGEBRA, 2021, 586 : 357 - 401
  • [37] Vertex operator algebras and associative algebras
    Dong, CY
    Li, HS
    Mason, G
    JOURNAL OF ALGEBRA, 1998, 206 (01) : 67 - 96
  • [38] Vertex algebras, Lie algebras, and superstrings
    Scheithauer, NR
    JOURNAL OF ALGEBRA, 1998, 200 (02) : 363 - 403
  • [39] Vertex algebras generated by Lie algebras
    Primc, M
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1999, 135 (03) : 253 - 293
  • [40] ASSOCIATIVE ALGEBRAS FOR (LOGARITHMIC) TWISTED MODULES FOR A VERTEX OPERATOR ALGEBRA
    Huang, Yi-Zhi
    Yang, Jinwei
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (06) : 3747 - 3786