Multi-agent broad reinforcement learning for intelligent traffic light control

被引:30
|
作者
Zhu, Ruijie [1 ]
Li, Lulu [1 ]
Wu, Shuning [1 ]
Lv, Pei [1 ]
Li, Yafei [1 ]
Xu, Mingliang [1 ]
机构
[1] Zhengzhou Univ, Sch Comp & Artif Intelligence, Zhengzhou, Peoples R China
基金
美国国家科学基金会;
关键词
Intelligent traffic light control; Deep neural networks; Broad reinforcment learning; Multi -agent deep reinforcement learning;
D O I
10.1016/j.ins.2022.11.062
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Intelligent traffic light control (ITLC) aims to relieve traffic congestion. Some multi-agent deep reinforcement learning (MADRL) algorithms have been proposed for ITLC, and most of them use deep neural networks to make decisions. However, the abundant parameters of deep structure lead to the time-consuming training process of MADRL. Recently, a broad reinforcement learning (BRL) approach has been proposed to improve the efficiency of training for an agent. Unlike MADRL algorithms that use deep architecture, BRL utilizes a broad architecture. In this paper, we propose a multi-agent broad reinforcement learning (MABRL) algorithm for ITLC. The MABRL algorithm adopts the broad network to process the joint information and updates the parameters using ridge regression. To increase the effectiveness of interaction among agents, we design a dynamic interaction mechanism (DIM) based on the attention mechanism. The DIM enables agents to aggregate information on particular intersections at appropriate moments. We conduct experiments on three different datasets. The results demonstrate that the effectiveness of MABRL outperforms several state-of-the-art algorithms in alleviating traffic congestion with shorter training time. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:509 / 525
页数:17
相关论文
共 50 条
  • [31] An Improved Traffic Signal Control Method Based on Multi-agent Reinforcement Learning
    Xu, Jianyou
    Zhang, Zhichao
    Zhang, Shuo
    Miao, Jiayao
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 6612 - 6616
  • [32] Multi-agent reinforcement learning for character control
    Li, Cheng
    Fussell, Levi
    Komura, Taku
    VISUAL COMPUTER, 2021, 37 (12): : 3115 - 3123
  • [33] Multi-agent reinforcement learning for character control
    Cheng Li
    Levi Fussell
    Taku Komura
    The Visual Computer, 2021, 37 : 3115 - 3123
  • [34] Learning Multi-Intersection Traffic Signal Control via Coevolutionary Multi-Agent Reinforcement Learning
    Chen, Wubing
    Yang, Shangdong
    Li, Wenbin
    Hu, Yujing
    Liu, Xiao
    Gao, Yang
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (11) : 15947 - 15963
  • [35] A Meta Multi-agent Reinforcement Learning Algorithm for Multi-intersection Traffic Signal Control
    Yang, Shantian
    Yang, Bo
    2021 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS DASC/PICOM/CBDCOM/CYBERSCITECH 2021, 2021, : 18 - 25
  • [36] Hierarchical Architecture for Multi-Agent Reinforcement Learning in Intelligent Game
    Li, Bin
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [37] A Multi-agent Reinforcement Learning Perspective on Distributed Traffic Engineering
    Geng, Nan
    Lan, Tian
    Aggarwal, Vaneet
    Yang, Yuan
    Xu, Mingwei
    2020 IEEE 28TH INTERNATIONAL CONFERENCE ON NETWORK PROTOCOLS (IEEE ICNP 2020), 2020,
  • [38] Traffic Distribution Algorithm Based on Multi-Agent Reinforcement Learning
    Cheng C.
    Teng J.-J.
    Zhao Y.-L.
    Song M.
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2019, 42 (06): : 43 - 48and57
  • [39] Reinforcement learning-based multi-agent system for network traffic signal control
    Arel, I.
    Liu, C.
    Urbanik, T.
    Kohls, A. G.
    IET INTELLIGENT TRANSPORT SYSTEMS, 2010, 4 (02) : 128 - 135
  • [40] Extensible Hierarchical Multi-Agent Reinforcement-Learning Algorithm in Traffic Signal Control
    Zhao, Pengqian
    Yuan, Yuyu
    Guo, Ting
    APPLIED SCIENCES-BASEL, 2022, 12 (24):