Robust spatial temporal imputation based on spatio-temporal generative adversarial nets

被引:3
|
作者
Huang, Longji [1 ]
Huang, Jianbin [1 ]
Li, He [1 ]
Cui, Jiangtao [1 ]
机构
[1] Xidian Univ, Sch Comp Sci & Technol, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
Generative adversarial network; Spatial temporal data; Data imputation; TIME-SERIES;
D O I
10.1016/j.knosys.2023.110919
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spatial temporal imputation is an important part of intelligent transportation system, and spatial temporal data missing also largely affects the performance of its downstream tasks. Spatial temporal data are affected by spatial, temporal, and unexpected conditions, and has a complex change pattern. Existing researches mostly focus on time series and often ignore the modeling of spatial dependency. Moreover, the imputation performance is poor under high missing rate or block missing scenarios, needing to enhance the model robustness. Therefore, we proposed a spatio-temporal generative adver-sarial imputation network (named STGAIN) to handle with the complex spatial temporal dependency and the diversity of missing conditions on spatio-temporal data. It includes a spatio-temporal generator and a spatio-temporal discriminator, which uses a graph convolutional neural network as a spatial aggregator and a one-dimensional deformable convolutional neural network as a temporal extractor. The generator observes the unmissing part data and the spatial relationships to impute the missing parts. The discriminator then takes the completed data as input and attempts to determine which components were actually observed and which were imputed. The spatio-temporal modeling ability was improved in the competition with each other. In order to make the generator in GAN distinguish the observed part from the missing part, a fusion loss function (including reconstruction loss and BCE loss) was designed for the generator training. Finally, experiments were conducted on two real highway datasets for different missing rates. And we test the model robustness under different size of dataset and noise interference. The results show that STGAIN significantly outperforms the existing methods.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Spatio-Temporal Learning for Video Deblurring based on Two-Stream Generative Adversarial Network
    Liyao Song
    Quan Wang
    Haiwei Li
    Jiancun Fan
    Bingliang Hu
    Neural Processing Letters, 2021, 53 : 2701 - 2714
  • [22] Bidirectional spatio-temporal generative adversarial network for video super-resolution
    Yang, Peng
    Chen, Zhangquan
    Sun, Yuankang
    Hu, Zhongjian
    Li, Bing
    PATTERN ANALYSIS AND APPLICATIONS, 2025, 28 (01)
  • [23] A flexible spatio-temporal model for air pollution with spatial and spatio-temporal covariates
    Lindstrom, Johan
    Szpiro, Adam A.
    Sampson, Paul D.
    Oron, Assaf P.
    Richards, Mark
    Larson, Tim V.
    Sheppard, Lianne
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2014, 21 (03) : 411 - 433
  • [24] A flexible spatio-temporal model for air pollution with spatial and spatio-temporal covariates
    Johan Lindström
    Adam A. Szpiro
    Paul D. Sampson
    Assaf P. Oron
    Mark Richards
    Tim V. Larson
    Lianne Sheppard
    Environmental and Ecological Statistics, 2014, 21 : 411 - 433
  • [25] Temporal Generative Adversarial Nets with Singular Value Clipping
    Saito, Masaki
    Matsumoto, Eiichi
    Saito, Shunta
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 2849 - 2858
  • [26] PSTAF-GAN: Progressive Spatio-Temporal Attention Fusion Method Based on Generative Adversarial Network
    Liu, Qiang
    Meng, Xiangchao
    Shao, Feng
    Li, Shutao
    IEEE Transactions on Geoscience and Remote Sensing, 2022, 60
  • [27] PSTAF-GAN: Progressive Spatio-Temporal Attention Fusion Method Based on Generative Adversarial Network
    Liu, Qiang
    Meng, Xiangchao
    Shao, Feng
    Li, Shutao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [28] Spatial, Temporal and Spatio-Temporal Patterns of Maritime Piracy
    Marchione, Elio
    Johnson, Shane D.
    JOURNAL OF RESEARCH IN CRIME AND DELINQUENCY, 2013, 50 (04): : 504 - 524
  • [29] Adversarial Spatio-Temporal Learning for Video Deblurring
    Zhang, Kaihao
    Luo, Wenhan
    Zhong, Yiran
    Ma, Lin
    Liu, Wei
    Li, Hongdong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (01) : 291 - 301
  • [30] Measuring disentangled generative spatio-temporal representation
    Zhao, Sichen
    Shao, Wei
    Chan, Jeffrey
    Salim, Flora D.
    PROCEEDINGS OF THE 2022 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2022, : 522 - 530