Robust spatial temporal imputation based on spatio-temporal generative adversarial nets

被引:3
|
作者
Huang, Longji [1 ]
Huang, Jianbin [1 ]
Li, He [1 ]
Cui, Jiangtao [1 ]
机构
[1] Xidian Univ, Sch Comp Sci & Technol, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
Generative adversarial network; Spatial temporal data; Data imputation; TIME-SERIES;
D O I
10.1016/j.knosys.2023.110919
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spatial temporal imputation is an important part of intelligent transportation system, and spatial temporal data missing also largely affects the performance of its downstream tasks. Spatial temporal data are affected by spatial, temporal, and unexpected conditions, and has a complex change pattern. Existing researches mostly focus on time series and often ignore the modeling of spatial dependency. Moreover, the imputation performance is poor under high missing rate or block missing scenarios, needing to enhance the model robustness. Therefore, we proposed a spatio-temporal generative adver-sarial imputation network (named STGAIN) to handle with the complex spatial temporal dependency and the diversity of missing conditions on spatio-temporal data. It includes a spatio-temporal generator and a spatio-temporal discriminator, which uses a graph convolutional neural network as a spatial aggregator and a one-dimensional deformable convolutional neural network as a temporal extractor. The generator observes the unmissing part data and the spatial relationships to impute the missing parts. The discriminator then takes the completed data as input and attempts to determine which components were actually observed and which were imputed. The spatio-temporal modeling ability was improved in the competition with each other. In order to make the generator in GAN distinguish the observed part from the missing part, a fusion loss function (including reconstruction loss and BCE loss) was designed for the generator training. Finally, experiments were conducted on two real highway datasets for different missing rates. And we test the model robustness under different size of dataset and noise interference. The results show that STGAIN significantly outperforms the existing methods.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] STGAN: Spatio-Temporal Generative Adversarial Network for Traffic Data Imputation
    Yuan, Ye
    Zhang, Yong
    Wang, Boyue
    Peng, Yuan
    Hu, Yongli
    Yin, Baocai
    IEEE TRANSACTIONS ON BIG DATA, 2023, 9 (01) : 200 - 211
  • [2] Spatio-Temporal Generative Adversarial Networks
    Qin, Chao
    Gao, Xiaoguang
    CHINESE JOURNAL OF ELECTRONICS, 2020, 29 (04) : 623 - 631
  • [3] Spatio-Temporal Generative Adversarial Networks
    QIN Chao
    GAO Xiaoguang
    Chinese Journal of Electronics, 2020, 29 (04) : 623 - 631
  • [4] Distributed spatio-temporal generative adversarial networks
    QIN Chao
    GAO Xiaoguang
    Journal of Systems Engineering and Electronics, 2020, 31 (03) : 578 - 592
  • [5] Distributed spatio-temporal generative adversarial networks
    Qin Chao
    Gao Xiaoguang
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2020, 31 (03) : 578 - 592
  • [6] Spatio-temporal generative adversarial network for gait anonymization
    Tieu, Ngoc-Dung T.
    Nguyen, Huy H.
    Hoang-Quoc Nguyen-Son
    Yamagishi, Junichi
    Echizen, Isao
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2019, 46 : 307 - 319
  • [7] Generative Adversarial Networks for Spatio-temporal Data: A Survey
    Gao, Nan
    Xue, Hao
    Shao, Wei
    Zhao, Sichen
    Qin, Kyle Kai
    Prabowo, Arian
    Rahaman, Mohammad Saiedur
    Salim, Flora D.
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2022, 13 (02)
  • [8] Spatio-Temporal Perception Nets
    Pongratz, Martin
    Velik, Rosemarie
    Machajdik, Jana
    IEEE AFRICON 2011, 2011,
  • [9] STA-GAN: A Spatio-Temporal Attention Generative Adversarial Network for Missing Value Imputation in Satellite Data
    Wang, Shuyu
    Li, Wengen
    Hou, Siyun
    Guan, Jihong
    Yao, Jiamin
    REMOTE SENSING, 2023, 15 (01)
  • [10] CUTOFF: A spatio-temporal imputation method
    Feng, Lingbing
    Nowak, Gen
    O'Neill, T. J.
    Welsh, A. H.
    JOURNAL OF HYDROLOGY, 2014, 519 : 3591 - 3605