Functional Subspace Variational Autoencoder for Domain-Adaptive Fault Diagnosis

被引:0
|
作者
Li, Tan [1 ]
Fung, Che-Heng [1 ]
Wong, Him-Ting [1 ]
Chan, Tak-Lam [1 ]
Hu, Haibo [1 ,2 ]
机构
[1] Ctr Adv Reliabil & Safety CAiRS, Hong Kong, Peoples R China
[2] Hong Kong Polytech Univ, Dept Elect & Informat Engn, Hong Kong, Peoples R China
关键词
functional data analysis; variational autoencoder; domain adaptation; reliability;
D O I
10.3390/math11132910
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents the functional subspace variational autoencoder, a technique addressing challenges in sensor data analysis in transportation systems, notably the misalignment of time series data and a lack of labeled data. Our technique converts vectorial data into functional data, which captures continuous temporal dynamics instead of discrete data that consist of separate observations. This conversion reduces data dimensions for machine learning tasks in fault diagnosis and facilitates the efficient removal of misalignment. The variational autoencoder identifies trends and anomalies in the data and employs a domain adaptation method to associate learned representations between labeled and unlabeled datasets. We validate the technique's effectiveness using synthetic and real-world transportation data, providing valuable insights for transportation infrastructure reliability monitoring.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Bearing fault diagnosis based on improved variational mode decomposition and optimized stacked denoising autoencoder
    Zhang B.
    Shu Y.
    Jiang Y.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2024, 30 (04): : 1408 - 1421
  • [42] Fault diagnosis using variational autoencoder GAN and focal loss CNN under unbalanced data
    Li, Weihan
    Liu, Dunke
    Li, Yang
    Hou, Ming
    Liu, Jie
    Zhao, Zhen
    Guo, Aibin
    Zhao, Huimin
    Deng, Wu
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2024,
  • [43] A hidden feature label propagation method based on deep convolution variational autoencoder for fault diagnosis
    She, Bo
    Wang, Xuan
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (05)
  • [44] A Variational Stacked Autoencoder with Harmony Search Optimizer for Valve Train Fault Diagnosis of Diesel Engine
    Chen, Kun
    Mao, Zhiwei
    Zhao, Haipeng
    Jiang, Zhinong
    Zhang, Jinjie
    SENSORS, 2020, 20 (01)
  • [45] Graph-Variational Convolutional Autoencoder-Based Fault Detection and Diagnosis for Photovoltaic Arrays
    Arifeen, Murshedul
    Petrovski, Andrei
    Hasan, Md Junayed
    Noman, Khandaker
    Ul Navid, Wasib
    Haruna, Auwal
    MACHINES, 2024, 12 (12)
  • [46] MFVAE: A Multiscale Fuzzy Variational Autoencoder for Big Data-Based Fault Diagnosis in Gearbox
    Hu, He-xuan
    Cai, Yicheng
    Meng, Qing
    Cui, Han
    Hu, Qiang
    Zhang, Ye
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2025, 33 (01) : 180 - 191
  • [47] Discrepancy-Guided Domain-Adaptive Data Augmentation
    Gao, Jian
    Hua, Yang
    Hu, Guosheng
    Wang, Chi
    Robertson, Neil M.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (08) : 5064 - 5075
  • [48] Domain-Adaptive Power Profiling Analysis Strategy for the Metaverse
    Li, Xiang
    Yang, Ning
    Liu, Weifeng
    Chen, Aidong
    Zhang, Yanlong
    Wang, Shuo
    Zhou, Jing
    INTERNATIONAL JOURNAL OF NETWORK MANAGEMENT, 2024,
  • [49] Spatiotemporal subspace variational autoencoder with repair mechanism for traffic data imputation
    Qian, Jialong
    Zhang, Shiqi
    Pian, Yuzhuang
    Chen, Xinyi
    Liu, Yonghong
    NEUROCOMPUTING, 2025, 617
  • [50] Domain-adaptive message passing graph neural network
    Shen, Xiao
    Pan, Shirui
    Choi, Kup-Sze
    Zhou, Xi
    NEURAL NETWORKS, 2023, 164 : 439 - 454