Machine learning assisted design of aluminum-lithium alloy with high specific modulus and specific strength

被引:27
|
作者
Li, Huiyu [1 ,2 ,3 ]
Li, Xiwu [1 ,2 ,3 ]
Li, Yanan [1 ,2 ,3 ]
Xiao, Wei [1 ,2 ,3 ]
Wen, Kai [1 ,2 ,3 ]
Li, Zhihui [1 ,3 ]
Zhang, Yongan [1 ,2 ,3 ]
Xiong, Baiqing [1 ,3 ]
机构
[1] GRINM Grp Co LTD, State Key Lab Nonferrous Met & Proc, Beijing 100088, Peoples R China
[2] GRIMAT Engn Inst Co LTD, Beijing 101407, Peoples R China
[3] Gen Res Inst Nonferrous Met, Beijing 100088, Peoples R China
关键词
Al-Li alloys; Machine learning; Specific modulus; Specific strength; Alloy design; HIGH-ENTROPY ALLOYS; INFORMATICS APPROACH; ELASTIC-MODULUS; LI ALLOY; ZR; PREDICTION; EVOLUTION; DISCOVERY; KINETICS;
D O I
10.1016/j.matdes.2022.111483
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Advanced aluminum-lithium alloys are the key structural materials urgently needed for the development of light-weighted aircraft in the aerospace field. In this study, we employ a machine learning approach accompanied by domain knowledge to realize the accelerated design of aluminum-lithium alloy with high specific modulus and specific strength by identifying an optimal combination of key features through a three-step feature filtering of datasets containing 145 alloys. The maximum specific modulus in the experimental alloys that screened from the predicted results increases by 4 % compared with the maximum specific modulus in the comparative dataset. The specific modulus of the designed alloy with the best comprehensive performance increased by 12.6 % compared with the widely used 2195-T8 alloy while maintaining a similar specific strength. Machine learning shows appealing feasibility and reliability in the field of materials design.(c) 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Strength Estimation of Aluminum Alloy using Machine Learning of NDT Data
    Ryu, Seong-Cheol
    Jhang, Kyung-Young
    JOURNAL OF THE KOREAN SOCIETY FOR NONDESTRUCTIVE TESTING, 2023, 43 (03) : 195 - 202
  • [42] A feasibility study of machine learning-assisted alloy design using wrought aluminum alloys as an example
    Soofi, Yasaman J.
    Rahman, Md Asad
    Gu, Yijia
    Liu, Jinling
    COMPUTATIONAL MATERIALS SCIENCE, 2022, 215
  • [43] Machine Learning Assisted Tensile Strength Prediction and Optimization of Ti Alloy
    Fatriansyah, Jaka Fajar
    Aqila, Muhamad Rafi
    Suhariadi, Iping
    Federico, Andreas
    Ajiputro, Dzaky Iman
    Pradana, Agrin Febrian
    Andreano, Yossi
    Rizky, Muhammad Ali Yafi
    Dhaneswara, Donanta
    Lockman, Zainovia
    Hur, Su-Mi
    IEEE ACCESS, 2024, 12 : 119660 - 119670
  • [44] Characterization of hydrogen assisted corrosion cracking of a high strength aluminum alloy
    Yang, Xiao
    Liu, Yan
    Zhang, Xian-feng
    Li, Xue-feng
    Zhang, Xin-yao
    Gao, Ling-qing
    MATERIALS TESTING, 2022, 64 (10) : 1527 - 1531
  • [45] A lightweight NbMoZrTi refractory high entropy alloy with high specific strength
    Chen, Wenjie
    Li, Xinmei
    MATERIALS LETTERS, 2024, 354
  • [46] Machine-Learning-Assisted Composition Design for High-Yield-Strength TWIP Steel
    Zhou, Xiaozhou
    Xu, Jiangjie
    Meng, Li
    Wang, Wenshan
    Zhang, Ning
    Jiang, Lei
    METALS, 2024, 14 (08)
  • [47] Machine-learning-assisted design of high strength steel I-section columns
    Cheng, Jinpeng
    Li, Xuelai
    Jiang, Ke
    Li, Shuai
    Su, Andi
    Zhao, Ou
    ENGINEERING STRUCTURES, 2024, 308
  • [48] Machine learning-assisted design of high-entropy alloys for optimal strength and ductility
    Singh, Shailesh Kumar
    Mahanta, Bashista Kumar
    Rawat, Pankaj
    Kumar, Sanjeev
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1007
  • [49] FeAl intermetallic alloy for high specific strength and stiffness applications
    Baccino, R
    Moret, F
    EUROMAT 97 - PROCEEDINGS OF THE 5TH EUROPEAN CONFERENCE ON ADVANCED MATERIALS AND PROCESSES AND APPLICATIONS: MATERIALS, FUNCTIONALITY & DESIGN, VOL 1: METALS AND COMPOSITES, 1997, : 151 - 157
  • [50] Machine learning-assisted design of biomedical high entropy alloys with low elastic modulus for orthopedic implants
    H. C. Ozdemir
    E. Bedir
    R. Yilmaz
    M. B. Yagci
    D. Canadinc
    Journal of Materials Science, 2022, 57 : 11151 - 11169