Optomechanical Cooling and Inertial Sensing at Low Frequencies

被引:2
|
作者
Zhang, Yanqi [1 ,2 ]
Hines, Adam [1 ]
Wilson, Dalziel J. [2 ]
Guzman, Felipe [1 ]
机构
[1] Texas A&M Univ, Aerosp Engn & Phys, College Stn, TX 77843 USA
[2] Univ Arizona, James C Wyant Coll Opt Sci, 1630 E Univ Blvd, Tucson, AZ 85721 USA
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
RADIATION-PRESSURE; INSTABILITY;
D O I
10.1103/PhysRevApplied.19.054004
中图分类号
O59 [应用物理学];
学科分类号
摘要
An inertial sensor design is proposed in this paper to achieve high sensitivity and large dynamic range in the subhertz-frequency regime. High acceleration sensitivity is obtained by combining optical cav-ity readout systems with monolithically fabricated mechanical resonators. A high-sensitivity heterodyne interferometer simultaneously monitors the test mass with an extensive dynamic range for low-stiffness resonators. The bandwidth is tuned by optical feedback cooling to the test mass via radiation pressure inter-action using an intensity-modulated laser. The transfer gain of the feedback system is analyzed to optimize system parameters towards the minimum cooling temperature that can be achieved. To practically imple-ment the inertial sensor, we propose a dynamic cooling mechanism to improve cooling efficiency while operating at low optical power levels. The overall system layout presents an integrated design that is compact and lightweight.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] LOW-PASS FILTERS TO SUPPRESS INERTIAL AND TIDAL FREQUENCIES
    THOMPSON, RORY
    JOURNAL OF PHYSICAL OCEANOGRAPHY, 1983, 13 (06) : 1077 - 1083
  • [12] Cavity optomechanical sensing
    Li, Bei-Bei
    Ou, Lingfeng
    Lei, Yuechen
    Liu, Yong-Chun
    NANOPHOTONICS, 2021, 10 (11) : 2799 - 2832
  • [13] Quantum theory of optomechanical cooling
    Marquardt, Florian
    Clerk, A. A.
    Girvin, S. M.
    JOURNAL OF MODERN OPTICS, 2008, 55 (19-20) : 3329 - 3338
  • [14] Torsional optomechanical cooling of a nanofiber
    Su, Dianqiang
    Solano, Pablo
    Wack, Jeffrey D.
    Orozco, Luis A.
    Zhao, Yanting
    PHOTONICS RESEARCH, 2022, 10 (02) : 601 - 609
  • [15] Fast cavity optomechanical cooling
    Stefanatos, Dionisis
    AUTOMATICA, 2016, 73 : 71 - 75
  • [16] Optomechanical Cooling in a Continuous System
    Otterstrom, Nils T.
    Behunin, Ryan O.
    Kittlaus, Eric A.
    Rakich, Peter T.
    PHYSICAL REVIEW X, 2018, 8 (04):
  • [17] Review of cavity optomechanical cooling
    刘永椿
    胡毓文
    黄智维
    肖云峰
    Chinese Physics B, 2013, 22 (11) : 105 - 117
  • [18] Optomechanical Cooling with Generalized Interferometers
    Xuereb, Andre
    Freegarde, Tim
    Horak, Peter
    Domokos, Peter
    PHYSICAL REVIEW LETTERS, 2010, 105 (01)
  • [19] Torsional optomechanical cooling of a nanofiber
    DIANQIANG SU
    PABLO SOLANO
    JEFFREY D.WACK
    LUIS A.OROZCO
    YANTING ZHAO
    Photonics Research, 2022, 10 (02) : 601 - 609
  • [20] Review of cavity optomechanical cooling
    Liu Yong-Chun
    Hu Yu-Wen
    Wei, Wong Chee
    Xiao Yun-Feng
    CHINESE PHYSICS B, 2013, 22 (11)