Optomechanical Cooling and Inertial Sensing at Low Frequencies

被引:2
|
作者
Zhang, Yanqi [1 ,2 ]
Hines, Adam [1 ]
Wilson, Dalziel J. [2 ]
Guzman, Felipe [1 ]
机构
[1] Texas A&M Univ, Aerosp Engn & Phys, College Stn, TX 77843 USA
[2] Univ Arizona, James C Wyant Coll Opt Sci, 1630 E Univ Blvd, Tucson, AZ 85721 USA
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
RADIATION-PRESSURE; INSTABILITY;
D O I
10.1103/PhysRevApplied.19.054004
中图分类号
O59 [应用物理学];
学科分类号
摘要
An inertial sensor design is proposed in this paper to achieve high sensitivity and large dynamic range in the subhertz-frequency regime. High acceleration sensitivity is obtained by combining optical cav-ity readout systems with monolithically fabricated mechanical resonators. A high-sensitivity heterodyne interferometer simultaneously monitors the test mass with an extensive dynamic range for low-stiffness resonators. The bandwidth is tuned by optical feedback cooling to the test mass via radiation pressure inter-action using an intensity-modulated laser. The transfer gain of the feedback system is analyzed to optimize system parameters towards the minimum cooling temperature that can be achieved. To practically imple-ment the inertial sensor, we propose a dynamic cooling mechanism to improve cooling efficiency while operating at low optical power levels. The overall system layout presents an integrated design that is compact and lightweight.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Optomechanical lasers for inertial sensing
    Wisniewski, Hayden
    Richardson, Logan
    Hines, Adam
    Laurain, Alexandre
    Guzman, Felipe
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2020, 37 (09) : B87 - B92
  • [2] Quantum hybrid optomechanical inertial sensing
    Richardson, Logan
    Hines, Adam
    Schaffer, Andrew
    Anderson, Brian P.
    Guzman, Felipe
    APPLIED OPTICS, 2020, 59 (22) : G160 - G166
  • [3] Optomechanical technologies for broadband inertial sensing
    Nelson, Andrea Mary-Helen
    Hines, Adam
    Zhang, Yanqi
    Guzman, Felipe
    INTERFEROMETRY XXI, 2022, 12223
  • [4] Low-frequency noise stabilization in optomechanical inertial accelerometers for high-resolution sensing
    Flores, Jaime Gonzalo Flor
    Wang, Wengting
    Huan, Yongjun
    Wu, Jiagui
    Yerebakan, Talha
    Bai, Qingsong
    Wong, Chee Wei
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [5] Laser cooling - Optomechanical sensing gets very cool indeed
    Palmer, D. Jason
    LASER FOCUS WORLD, 2007, 43 (01): : 37 - +
  • [6] Force sensing and cooling for the mechanical membrane in a hybrid optomechanical system
    He, Qing
    Badshah, Fazal
    Song, Yanlai
    Wang, Lianbei
    Liang, Erjun
    Su, Shi-Lei
    PHYSICAL REVIEW A, 2022, 105 (01)
  • [7] Optomechanical inertial sensors
    Hines, Adam
    Richardson, Logan
    Wisniewski, Hayden
    Guzman, Felipe
    APPLIED OPTICS, 2020, 59 (22) : G167 - G174
  • [8] Low frequency inertial sensing
    Nelson, Andrea
    Hines, Adam
    Valdes, Guillermo
    Sanjuan, Jose
    Guzman, Felipe
    2023 IEEE INTERNATIONAL SYMPOSIUM ON INERTIAL SENSORS AND SYSTEMS, INERTIAL, 2023,
  • [9] Noise Analysis in Optomechanical Inertial Sensors
    Lee, Jonathan Y.
    Lin, Qiang
    2016 3RD IEEE INTERNATIONAL SYMPOSIUM ON INERTIAL SENSORS AND SYSTEMS, 2016, : 132 - 135
  • [10] Optical side-band cooling of a low frequency optomechanical system
    Eerkens, H. J.
    Buters, F. M.
    Weaver, M. J.
    Pepper, B.
    Welker, G.
    Heeck, K.
    Sonin, P.
    de Man, S.
    Bouwmeester, D.
    OPTICS EXPRESS, 2015, 23 (06): : 8014 - 8020