Misbehavior detection system with semi-supervised federated learning

被引:3
|
作者
Kristianto, Edy [1 ]
Lin, Po-Ching [1 ]
Hwang, Ren-Hung [2 ]
机构
[1] Natl Chung Cheng Univ, Dept Comp Sci & Informat Engn, Chiayi, Taiwan
[2] Natl Yang Ming Chiao Tung Univ, Coll Artificial Intelligence, Tainan, Taiwan
关键词
Misbehavior detection system; Semi-supervised learning; V2X communications; Federated learning; AUTHORIZATION USAGE CONTROL; SAFETY DECIDABILITY;
D O I
10.1016/j.vehcom.2023.100597
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
V2X communications can enhance transportation safety by exchanging safety information between vehicles, road infrastructures, networks, and pedestrians. However, the safety messages are vulnerable to disruption from faulty components or an attack that can cause misinformation. Recently, a machine learning-based misbehavior detection system (MDS) has been widely investigated to detect the misbehaving vehicles to secure the V2X communications. Nonetheless, machine learning models need sufficient labeled data for learning purposes. However, the volume of unlabeled data is usually larger than that of labeled data in practice. Moreover, transferring the large dataset to a centralized learning model will consume much bandwidth. Thus, we propose a semi-supervised federated learning MDS to overcome the limitations of unlabeled data and bring the training close to the data sources to reduce the bandwidth to the core network. Overall, our model with only limited labeled data training (5%-30%) can achieve the F1-score up to 0.96 and the recall up to 0.95. The F1-score is up to 0.26 higher and the recall is up to 0.29 higher than the performance of centralized supervised learning. The federated learning model can reduce the core network bandwidth utilization by up to 95%.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Broad learning system for semi-supervised learning
    Liu, Zheng
    Huang, Shiluo
    Jin, Wei
    Mu, Ying
    NEUROCOMPUTING, 2021, 444 (444) : 38 - 47
  • [32] SVMDformer: A Semi-supervised Vehicular Misbehavior Detection Framework based on Transformer in IoV
    Liu, Zhikang
    Xu, Hongyun
    Kuang, Yong
    Li, Feng
    2023 IEEE 43RD INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS, ICDCS, 2023, : 887 - 897
  • [33] Semi-supervised Learning Framework for UAV Detection
    Medaiyese, Olusiji O.
    Ezuma, Martins
    Lauf, Adrian P.
    Guvenc, Ismail
    2021 IEEE 32ND ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2021,
  • [34] Semi-Supervised Learning for Cervical Precancer Detection
    Angara, Sandeep
    Guo, Peng
    Xue, Zhiyun
    Antani, Sameer
    2021 IEEE 34TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2021, : 202 - 206
  • [35] Semi-supervised Anomaly Detection with Reinforcement Learning
    Lee, Changheon
    Kim, JoonKyu
    Kang, Suk-Ju
    2022 37TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC 2022), 2022, : 933 - 936
  • [36] Semi-Supervised Active Learning for Object Detection
    Chen, Sijin
    Yang, Yingyun
    Hua, Yan
    ELECTRONICS, 2023, 12 (02)
  • [37] Semi-supervised Learning for Unknown Malware Detection
    Santos, Igor
    Nieves, Javier
    Bringas, Pablo G.
    INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE, 2011, 91 : 415 - 422
  • [38] Proposal Learning for Semi-Supervised Object Detection
    Tang, Peng
    Ramaiah, Chetan
    Wang, Yan
    Xu, Ran
    Xiong, Caiming
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WACV 2021, 2021, : 2290 - 2300
  • [39] A semi-supervised learning model for intrusion detection
    Jiang, Eric P.
    INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2019, 13 (03): : 343 - 353
  • [40] Collaborative Detection for Security Threats to Distributed Generator Regulation Based on Semi-supervised Federated Learning
    Chen, Mingliang
    Lu, Zhixue
    Xie, Guoqiang
    Yu, Yingting
    Li, Yuan
    Li, Yuancheng
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2024, 48 (22): : 199 - 209