Prior knowledge-embedded meta-transfer learning for few-shot fault diagnosis under variable operating conditions

被引:46
|
作者
Lei, Zihao [1 ,2 ,3 ,4 ]
Zhang, Ping [5 ]
Chen, Yuejian [6 ]
Feng, Ke [7 ]
Wen, Guangrui [1 ,2 ,3 ]
Liu, Zheng [4 ]
Yan, Ruqiang [1 ]
Chen, Xuefeng [1 ]
Yang, Chunsheng [8 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, Natl Key Lab Aerosp Power Syst & Plasma Technol, Xian 710049, Peoples R China
[3] Xi An Jiao Tong Univ, Key Lab Educ Minist Modern Design & Rotor Bearing, Xian 710049, Peoples R China
[4] Univ British Columbia, Sch Engn, Vancouver, BC, Canada
[5] China Elect Technol Grp Corp, Res Inst 28, Chengdu 610036, Peoples R China
[6] Tongji Univ, Inst Rail Transit, Shanghai 201804, Peoples R China
[7] Natl Univ Singapore, Dept Ind Syst Engn & Management, Singapore 117576, Singapore
[8] Natl Res Council Canada, Aerosp Res Ctr, Ottawa, ON K1A 0R6, Canada
基金
中国国家自然科学基金;
关键词
Intelligent fault diagnosis; Prior knowledge embedding; Few-shot learning; Meta-transfer learning; Variable operating conditions;
D O I
10.1016/j.ymssp.2023.110491
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In recent years, intelligent fault diagnosis based on deep learning has achieved vigorous development thanks to its powerful feature representation ability. However, scarcity of high-quality data, especially samples under severe fault states, and variable operating conditions have limited the industrial application of intelligent fault diagnosis. To alleviate this predicament, a novel prior knowledge-embedded meta-transfer learning (PKEMTL) is proposed for few-shot fault diagnosis with limited training data and scarce test data. The method focuses on the problem of few-shot fault diagnosis under variable operating conditions to improve adaptability. Different from traditional models, the PKEMTL employs a metric-based meta-learning framework and embeds prior knowledge to enable cross-task learning under variable operating conditions. Specifically, order tracking is firstly introduced as preliminary prior information for data augmentation, and then the augmented data are divided into a series of meta-tasks. Secondly, the meta-tasks are performed by lightweight multiscale feature encoding to obtain high-level feature representations. Next, the meta-learning module based on diagnostic knowledge embedding guides the model to acquire meta-knowledge of speed generalization by constructing the selfsupervised task to embed additional prior knowledge into the meta-training process. The generalization performance of the model is further improved by adaptive information fusion learning as a comprehensive decision-making module. Two case studies under variable operating conditions are implemented to validate the effectiveness and superiority of the proposed few-shot fault diagnosis method.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Adaptive Meta Transfer Learning with Efficient Self-Attention for Few-Shot Bearing Fault Diagnosis
    Jun Zhao
    Tang Tang
    Ying Yu
    Jingwei Wang
    Tianyuan Yang
    Ming Chen
    Jie Wu
    Neural Processing Letters, 2023, 55 : 949 - 968
  • [42] A meta-transfer learning prediction method with few-shot data for the remaining useful life of rolling bearing
    She, Daoming
    Duan, Yudan
    Yang, Zhichao
    Pecht, Michael
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2025,
  • [43] Metric-based meta-learning model for few-shot fault diagnosis under multiple limited data conditions
    Wang, Duo
    Zhang, Ming
    Xu, Yuchun
    Lu, Weining
    Yang, Jun
    Zhang, Tao
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2021, 155
  • [44] Graph Few-Shot Learning via Knowledge Transfer
    Yao, Huaxiu
    Zhang, Chuxu
    Wei, Ying
    Jiang, Meng
    Wang, Suhang
    Huang, Junzhou
    Chawla, Nitesh, V
    Li, Zhenhui
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 6656 - 6663
  • [45] Few-shot transfer learning method based on meta-learning and graph convolution network for machinery fault diagnosis
    Wang, Huaqing
    Tong, Xingwei
    Wang, Pengxin
    Xu, Zhitao
    Song, Liuyang
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2023,
  • [46] Symmetric Hallucination With Knowledge Transfer for Few-Shot Learning
    Wang, Shuo
    Zhang, Xinyu
    Wang, Meng
    He, Xiangnan
    IEEE TRANSACTIONS ON MULTIMEDIA, 2025, 27 : 1797 - 1807
  • [47] Meta-transfer-adjustment learning for few-shot learning
    Chen, Yadang
    Yan, Hui
    Yang, Zhi-Xin
    Wu, Enhua
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2022, 89
  • [48] Prior Knowledge-Augmented Self-Supervised Feature Learning for Few-Shot Intelligent Fault Diagnosis of Machines
    Zhang, Tianci
    Chen, Jinglong
    He, Shuilong
    Zhou, Zitong
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (10) : 10573 - 10584
  • [49] Fault diagnosis method for sucker rod well with few shots based on meta-transfer learning
    Zhang, Kai
    Wang, Qiang
    Wang, Lingbo
    Zhang, Huaqing
    Zhang, Liming
    Yao, Jun
    Yang, Yongfei
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 212
  • [50] A meta-learning network with anti-interference for few-shot fault diagnosis
    Zhao, Zhiqian
    Zhao, Runchao
    Wu, Xianglin
    Hu, Xiuli
    Che, Renwei
    Zhang, Xiang
    Jiao, Yinghou
    NEUROCOMPUTING, 2023, 552