Convolutional neural network-based spatiotemporal prediction for deformation behavior of arch dams

被引:24
|
作者
Pan, Jianwen [1 ,3 ]
Liu, Wenju [2 ]
Liu, Changwei [1 ]
Wang, Jinting [1 ]
机构
[1] Tsinghua Univ, State Key Lab Hydrosci & Engn, Beijing, Peoples R China
[2] CCTEG Coal Min Res Inst, Beijing, Peoples R China
[3] Tsinghua Univ, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Arch dams; Deformation; Structural health monitoring; Convolutional neural network; TEMPERATURE; MODELS;
D O I
10.1016/j.eswa.2023.120835
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deformation directly reflects the behavior of arch dams, and deformation behavior models have been widely used for structural health monitoring (SHM) in accordance with monitoring data. The deformation field brings advantages to the SHM of arch dams in terms of the spatiotemporal scale. In this paper, a spatiotemporal deformation field behavior model based on a convolutional neural network (CNN) was proposed. The temperature field of the dam fusing the climatological data, including air temperature, weather conditions, and solar radiation, was introduced. Furthermore, the water pressure and constraint fields were also input into the CNNbased model. The physical law and structural continuity were considered, and the parameters of the CNN-based model were general and uniform for each predicted location. The accuracy and extrapolation ability of the proposed model were evaluated. The results illustrate that the CNN-based model predicts accurate deformation at the spatiotemporal scale of the arch dam. The accuracy of the prediction of single-point deformation time series from the CNN-based model is close to that from the traditional hydraulic-seasonal-time (HST) model and finite element model (FEM). For the prediction of the spatial deformation field, the mean MAE of the CNN-based model is 2.68 mm, while it is 5.66 mm for the FEM model, showing much higher prediction accuracy of the CNNbased model. The proposed globally uniform CNN-based model can derive a high-precision and high-density deformation field of arch dams with sparse monitoring data. It can also be continuously updated in real-time according to the latest monitoring data without inverse analysis and parameter adjustment like the FEM model.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Fast Spatiotemporal Sequence Graph Convolutional Network-based transient flow prediction around different airfoils
    Xie, Hao-Ran
    Wang, Zhi-Qiao
    Li, Yu-Bai
    Li, Qiang
    Wu, Wei-Tao
    Han, Jun-Li
    Peng, Jiang-Zhou
    He, Yong
    PHYSICS OF FLUIDS, 2024, 36 (10)
  • [32] Iterative Convolutional Neural Network-Based Illumination Estimation
    Koscevic, Karlo
    Subasic, Marko
    Loncaric, Sven
    IEEE ACCESS, 2021, 9 : 26755 - 26765
  • [33] Convolutional Neural Network-based UWB System Localization
    Doan Tan Anh Nguyen
    Lee, Han-Gyeol
    Joung, Jingon
    Jeong, Eui-Rim
    11TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE: DATA, NETWORK, AND AI IN THE AGE OF UNTACT (ICTC 2020), 2020, : 488 - 490
  • [34] Convolutional Neural Network-based Image Restoration (CNNIR)
    Huang, Zheng-Jie
    Lu, Wei-Hao
    Patel, Brijesh
    Chiu, Po-Yan
    Yang, Tz-Yu
    Tong, Hao Jian
    Bucinskas, Vytautas
    Greitans, Modris
    Lin, Po Ting
    2022 18TH IEEE/ASME INTERNATIONAL CONFERENCE ON MECHATRONIC AND EMBEDDED SYSTEMS AND APPLICATIONS (MESA 2022), 2022,
  • [35] Convolutional Neural Network-Based Discriminator for Outlier Detection
    Alharbi, Fahad
    El Hindi, Khalil
    Al Ahmadi, Saad
    Alsalamn, Hussien
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [36] Convolutional Neural Network-Based Image Distortion Classification
    Buczkowski, Mateusz
    Stasinski, Ryszard
    PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING (IWSSIP 2019), 2019, : 275 - 279
  • [37] Convolutional neural network-based cow interaction watchdog
    Ardo, Hakan
    Guzhva, Oleksiy
    Nilsson, Mikael
    Herlin, Anders H.
    IET COMPUTER VISION, 2018, 12 (02) : 171 - 177
  • [38] Convolutional Neural Network-Based Fish Posture Classification
    Li, Xin
    Ding, Anzi
    Mei, Shaojie
    Wu, Wenjin
    Hou, Wenguang
    COMPLEXITY, 2021, 2021 (2021)
  • [39] Convolutional neural network-based surgical instrument detection
    Cai, Tongbiao
    Zhao, Zijian
    TECHNOLOGY AND HEALTH CARE, 2020, 28 : S81 - S88
  • [40] A neural network-based prediction method of machining deformation for thin-walled workpiece
    Qin, G.-H. (qghwzx@126.com), 2013, China Ordnance Society, P.O. Box 2431, Beijing, 100081, China (34):