Understanding Private Car Aggregation Effect via Spatio-Temporal Analysis of Trajectory Data

被引:128
|
作者
Xiao, Zhu [1 ]
Fang, Hui [1 ]
Jiang, Hongbo [1 ]
Bai, Jing [2 ]
Havyarimana, Vincent [3 ]
Chen, Hongyang [4 ]
Jiao, Licheng [2 ]
机构
[1] Hunan Univ, Coll Comp Sci & Elect Engn, Changsha 410082, Peoples R China
[2] Xidian Univ, Sch Artificial Intelligence, Key Lab Intelligent Percept & Image Understanding, Xian 710071, Peoples R China
[3] Dept Appl Sci, Ecole Normale Superieure, Bujumbura 6983, Burundi
[4] Zhejiang Lab, Intelligent Syst Grp, Hangzhou 311121, Peoples R China
基金
中国国家自然科学基金;
关键词
Automobiles; Spatiotemporal phenomena; Trajectory; Kernel; Correlation; Predictive models; Data models; Aggregation effect; private car; spatiotemporal attention network (STANet); stay behavior; trajectory data; TIME; PREDICTABILITY; PREDICTION; FRAMEWORK;
D O I
10.1109/TCYB.2021.3117705
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Understanding the private car aggregation effect is conducive to a broad range of applications, from intelligent transportation management to urban planning. However, this work is challenging, especially on weekends, due to the inefficient representations of spatiotemporal features for such aggregation effect and the considerable randomness of private car mobility on weekends. In this article, we propose a deep learning framework for a spatiotemporal attention network (STANet) with a neural algorithm logic unit (NALU), the so-called STANet-NALU, to understand the dynamic aggregation effect of private cars on weekends. Specifically: 1) we design an improved kernel density estimator (KDE) by defining a log-cosh loss function to calculate the spatial distribution of the aggregation effect with guaranteed robustness and 2) we utilize the stay time of private cars as a temporal feature to represent the nonlinear temporal correlation of the aggregation effect. Next, we propose a spatiotemporal attention module that separately captures the dynamic spatial correlation and nonlinear temporal correlation of the private car aggregation effect, and then we design a gate control unit to fuse spatiotemporal features adaptively. Further, we establish the STANet-NALU structure, which provides the model with numerical extrapolation ability to generate promising prediction results of the private car aggregation effect on weekends. We conduct extensive experiments based on real-world private car trajectories data. The results reveal that the proposed STANet-NALU\pagebreak outperforms the well-known existing methods in terms of various metrics, including the mean absolute error (MAE), root mean square error (RMSE), Kullback-Leibler divergence (KL), and R2.
引用
收藏
页码:2346 / 2357
页数:12
相关论文
共 50 条
  • [41] Spatio-temporal aggregation using sketches
    Tao, YF
    Kollios, G
    Considine, J
    Li, FF
    Papadias, D
    20TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING, PROCEEDINGS, 2004, : 214 - 225
  • [42] A THEORY OF SPATIO-TEMPORAL AGGREGATION FOR VISION
    FLINCHBAUGH, BE
    CHANDRASEKARAN, B
    ARTIFICIAL INTELLIGENCE, 1981, 17 (1-3) : 387 - 407
  • [43] A Spatio-Temporal Linked Data Representation for Modeling Spatio-Temporal Dialect Data
    Scholz, Johannes
    Hrastnig, Emanual
    Wandl-Vogt, Eveline
    PROCEEDINGS OF WORKSHOPS AND POSTERS AT THE 13TH INTERNATIONAL CONFERENCE ON SPATIAL INFORMATION THEORY (COSIT 2017), 2018, : 275 - 282
  • [44] Multiscale recurrence analysis of spatio-temporal data
    Riedl, M.
    Marwan, N.
    Kurths, J.
    CHAOS, 2015, 25 (12)
  • [45] Data analysis and processing for spatio-temporal forecasting
    Lee, Hyoungwoo
    Choo, Jaegul
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2020), 2020, : 737 - 739
  • [46] Spatio-Temporal Analysis for Smart City Data
    Bermudez-Edo, Maria
    Barnaghi, Payam
    COMPANION PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2018 (WWW 2018), 2018, : 1841 - 1845
  • [47] Interactive exploratory analysis of spatio-temporal data
    Dreesman, JM
    COMPSTAT 2002: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2002, : 407 - 412
  • [48] Fuzzy cluster analysis of spatio-temporal data
    Liu, ZJ
    George, R
    COMPUTER AND INFORMATION SCIENCES - ISCIS 2003, 2003, 2869 : 984 - 991
  • [49] Research of Spatio-temporal Similarity Measure on Network Constrained Trajectory Data
    Xia, Ying
    Wang, Guo-Yin
    Zhang, Xu
    Kim, Gyoung-Bae
    Bae, Hae-Young
    ROUGH SET AND KNOWLEDGE TECHNOLOGY (RSKT), 2010, 6401 : 491 - 498
  • [50] Online Approach for Spatio-Temporal Trajectory Data Reduction for Portable Devices
    Heemin Park
    Young-Jun Lee
    Jinseok Chae
    Wonik Choi
    Journal of Computer Science & Technology, 2013, 28 (04) : 597 - 604