Thioredoxin-1 and its mimetic peptide improve systolic cardiac function and remodeling after myocardial infarction

被引:4
|
作者
Medali, Tania [1 ]
Couchie, Dominique [1 ]
Mougenot, Nathalie [2 ]
Mihoc, Maria [2 ]
Bergmann, Olaf [3 ,4 ]
Derks, Wouter [3 ,4 ]
Szweda, Luke I. [5 ]
Yacoub, Magdi [6 ]
Soliman, Saif [6 ]
Aguib, Yasmine [6 ]
Wagdy, Kerolos [6 ]
Ibrahim, Ayman M. [6 ]
Friguet, Bertrand [1 ]
Rouis, Mustapha [1 ,7 ]
机构
[1] Sorbonne Univ, Inst Biol Paris Seine, CNRS, INSERM,Biol Adaptat & Ageing B2A IBPS, Paris, France
[2] Sorbonne Univ, Fac Med, INSERM, Plateforme PECMV,UMS28, Paris, France
[3] Karolinska Inst, Dept Cell & Mol Biol, Stockholm, Sweden
[4] Tech Univ Dresden, CRTD, Dresden, Germany
[5] Univ Texas Southwestern Med Ctr, Dept Internal Med, Div Cardiol, Dallas, TX USA
[6] Magdi Yacoub Heart Ctr, Aswan, Egypt
[7] Sorbonne Univ, UMR 8256 INSERMU 1164, Biol Adaptat & Ageing B2A IBPS, Campus Pierre & Marie Curie 7, Paris F-75252, France
来源
FASEB JOURNAL | 2024年 / 38卷 / 01期
关键词
cardiomyocyte; CB3; mimetic peptide; myocardial infarction; thioredoxin; HEMATOPOIETIC STEM-CELLS; HEART REGENERATION; CARDIOMYOCYTES; PHOSPHORYLATION; MACROPHAGES; DISEASE; REPAIR; ROLES;
D O I
10.1096/fj.202300792RR
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Myocardial infarction (MI) is characterized by a significant loss of cardiomyocytes (CMs), and it is suggested that reactive oxygen species (ROS) are involved in cell cycle arrest, leading to impaired CM renewal. Thioredoxin-1 (Trx-1) scavenges ROS and may play a role in restoring CM renewal. However, the truncated form of Trx-1, Trx-80, can compromise its efficacy by exerting antagonistic effects. Therefore, a Trx-1 mimetic peptide called CB3 was tested as an alternative way to restore CMs. This study aimed to investigate the effects of Trx-1, Trx-80, and CB3 on mice with experimental MI and study the underlying mechanism of CB3 on CMs. Mouse cardiac parameters were quantified by echocardiography, and infarction size and fibrosis determined using Trichrome and Picro-Sirius Red staining. The study found that Trx-1 and CB3 improved mouse cardiac function, reduced the size of cardiac infarct and fibrosis, and decreased the expression of cardiac inflammatory markers. Furthermore, CB3 polarized macrophages into M2 phenotype, reduced apoptosis and oxidative stress after MI, and increased CM proliferation in cell culture and in vivo. CB3 effectively protected against myocardial infarction and could represent a new class of compounds for treating MI. Experimental Myocardial infarction (MI) using ligation procedure induces cardiac dysfunction, high level of ROS, inflammation, apoptosis, fibrosis and cardiomyocyte (CM) loss. AAV overexpressing human Trx-1, but not its truncated Trx-80 form, specifically in CM or its mimetic peptide, CB3, improves mouse cardiac function, reduces the size of cardiac infarct and fibrosis, decreases the expression of cardiac inflammatory markers, reduces apoptosis, oxidative stress and increases CM proliferation.image
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Effects of renal sympathetic denervation on cardiac systolic function after myocardial infarction in rats
    Guo, Jiqun
    Zhou, Zhongxia
    Li, Zhenzhen
    Liu, Qian
    Zhu, Guoqing
    Shan, Qijun
    JOURNAL OF BIOMEDICAL RESEARCH, 2016, 30 (05): : 373 - 379
  • [22] Effects of renal sympathetic denervation on cardiac systolic function after myocardial infarction in rats
    Jiqun Guo
    Zhongxia Zhou
    Zhenzhen Li
    Qian Liu
    Guoqing Zhu
    Qijun Shan
    The Journal of Biomedical Research, 2016, 30 (05) : 373 - 379
  • [23] Cardiac immune cell remodeling after myocardial infarction
    Ismahil, Mohamed Ameen
    Prabhu, Sumanth D.
    JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2013, 62 : 142 - 143
  • [24] Pathomorphological Characteristics of Cardiac Remodeling after Myocardial Infarction
    V. D. Rozenberg
    L. M. Nepomniashchikh
    Bulletin of Experimental Biology and Medicine, 2003, 135 : 96 - 100
  • [25] Effects of erythropoietin on cardiac remodeling after myocardial infarction
    Nishiya, Daisuke
    Omura, Takashi
    Shimada, Kenei
    Matsumoto, Ryo
    Kusuyama, Takanori
    Enomoto, Soichiro
    Iwao, Hiroshi
    Takeuchi, Kazuhide
    Yoshikawa, Junichi
    Yoshiyama, Minoru
    JOURNAL OF PHARMACOLOGICAL SCIENCES, 2006, 101 (01) : 31 - 39
  • [26] Pathomorphological characteristics of cardiac remodeling after myocardial infarction
    Rozenberg, VD
    Nepomniashchikh, LM
    BULLETIN OF EXPERIMENTAL BIOLOGY AND MEDICINE, 2003, 135 (01) : 96 - 100
  • [27] Taurine attenuates cardiac remodeling after myocardial infarction
    Ardisson, Lidiane P.
    Rafacho, Bruna P. M.
    Santos, Priscila P.
    Assalin, Heloisa
    Goncalves, Andrea F.
    Azevedo, Paula S.
    Minicucci, Marcos F.
    Polegato, Bertha F.
    Okoshi, Katashi
    Marchini, Julio Sergio
    Barbisan, Luis F.
    Fernandes, Ana Angelica H.
    Seiva, Fabio R. F.
    Paiva, Sergio A. R.
    Zornoff, Leonardo A. M.
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2013, 168 (05) : 4925 - 4926
  • [28] BDNF Protects Cardiac Remodeling After Myocardial Infarction
    Okada, Sho
    Minamino, Tohru
    Toko, Haruhiro
    Nishi, Jun-ichiro
    Yokoyama, Masataka
    Kayama, Yosuke
    Komuro, Issei
    CIRCULATION RESEARCH, 2008, 103 (05) : E39 - E39
  • [29] Versicans role in cardiac remodeling after myocardial infarction
    Gebert, L.
    Gorski, D. J.
    Petz, A.
    Piroth, M.
    Bottermann, K.
    Gorressen, S.
    Hube, T.
    Pfeifle, H.
    Lautwein, T.
    Koehrer, K.
    Wight, T. N.
    Fischer, J. W.
    NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2024, 397 : S9 - S10
  • [30] Erythropoietin prevents cardiac remodeling after myocardial infarction
    Nishiya, D
    Omura, T
    Shimada, K
    Enomoto, S
    Kusuyama, T
    Matsumoto, R
    Yoshiyama, M
    JOURNAL OF CARDIAC FAILURE, 2005, 11 (09) : S281 - S281