Improved Electrochemical Performance of Spinel LiNi0.5Mn1.5O4 Cathode Materials with a Dual Structure Triggered by LiF at Low Calcination

被引:0
|
作者
Lin, Chengliang [1 ]
Yin, Jiaxuan [1 ]
Cui, Shengrui [1 ]
Huang, Xiang [1 ]
Liu, Wei [1 ]
Jin, Yongcheng [1 ]
机构
[1] Ocean Univ China, Sch Mat Sci & Engn, Qingdao 266100, Peoples R China
基金
中国国家自然科学基金;
关键词
spinel cathode material; LiF coating; F-doping; electrolyte decomposition; DFT calculation; CHARGE-DISCHARGE BEHAVIOR; SURFACE MODIFICATION; ELECTRONIC-STRUCTURE; ELECTROLYTES; STABILITY;
D O I
暂无
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
High-voltage spinel LiNi0.5Mn1.5O4 (LNMO), which has the advantages of high energy density, low cost, environmental friendliness, and being cobalt-free, is considered one of the most promising cathode materials for the next generation of power lithium-ion batteries. However, the side reaction at the interface between the LNMO cathode material and electrolyte usually causes a low specific capacity, poor rate, and poor cycling performance. In this work, we propose a facilitated method to build a well-tuned dual structure of LiF coating and F- doping LNMO cathode material via simple calcination of LNMO with LiF at low temperatures. The experimental results and DFT analysis demonstrated that the powerful interface protection due to the LiF coating and the higher lithium diffusion coefficient caused by F- doping effectively improved the electrochemical performance of LNMO. The optimized LNMO-1.3LiF cathode material presents a high discharge capacity of 140.3 mA h g-1 at 1 C and 118.7 mA h g-1 at 10 C. Furthermore, the capacity is retained at 75.4% after the 1000th cycle at 1 C. Our research provides a concrete guidance on how to effectively boost the electrochemical performance of LNMO cathode materials.
引用
收藏
页码:16778 / 16793
页数:16
相关论文
共 50 条
  • [21] Preparation of LiNi0.5Mn1.5O4 cathode materials by electrospinning
    Zhong, Shengkui
    Hu, Piao
    Luo, Xia
    Zhang, Xiaoping
    Wu, Ling
    IONICS, 2016, 22 (11) : 2037 - 2044
  • [22] Electrochemical intercalation kinetics of lithium ions for spinel LiNi0.5Mn1.5O4 cathode material
    Ting-Feng Yi
    Chun-Yan Li
    Yan-Rong Zhu
    Rong-Sun Zhu
    J. Shu
    Russian Journal of Electrochemistry, 2010, 46 : 227 - 232
  • [23] Electrochemical Intercalation Kinetics of Lithium Ions for Spinel LiNi0.5Mn1.5O4 Cathode Material
    Yi, Ting-Feng
    Li, Chun-Yan
    Zhu, Yan-Rong
    Zhu, Rong-Sun
    Shu, J.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2010, 46 (02) : 227 - 232
  • [24] Disordered spinel LiNi0.5Mn1.5O4 cathode with improved rate performance for lithium-ion batteries
    Rosedhi, Nur Diyana
    Idris, Nurul Hayati
    Rahman, Md Mokhlesur
    Din, M. F. Md
    Wang, Jianli
    ELECTROCHIMICA ACTA, 2016, 206 : 374 - 380
  • [25] Synthesis and enhanced electrochemical performance of LiNi0.5Mn1.5O4 cathode materials under the assistance of polyvinylpyrrolidone
    Yaqiang Lang
    Xianli Sun
    Gang Xue
    Xinhui Duan
    Li Wang
    Guangchuan Liang
    Ionics, 2022, 28 : 5025 - 5038
  • [26] Effects of TiO2 coating on electrochemical performance of LiNi0.5Mn1.5O4 cathode materials
    Chang Q.
    Wei A.-J.
    Li W.
    Zhang L.-H.
    Liu Z.-F.
    Gao Xiao Hua Xue Gong Cheng Xue Bao/Journal of Chemical Engineering of Chinese Universities, 2019, 33 (03): : 715 - 723
  • [27] Synthesis and enhanced electrochemical performance of LiNi0.5Mn1.5O4 cathode materials under the assistance of polyvinylpyrrolidone
    Lang, Yaqiang
    Sun, Xianli
    Xue, Gang
    Duan, Xinhui
    Wang, Li
    Liang, Guangchuan
    IONICS, 2022, 28 (11) : 5025 - 5038
  • [28] Role of carbon nanotube on preparation of spinel LiNi0.5Mn1.5O4 cathode
    Hao Ding
    Ningshuang Zhang
    Peng Wang
    Hong Dong
    Runrun Li
    Shiyou Li
    Journal of Materials Science, 2022, 57 : 14440 - 14449
  • [29] Role of carbon nanotube on preparation of spinel LiNi0.5Mn1.5O4 cathode
    Ding, Hao
    Zhang, Ningshuang
    Wang, Peng
    Dong, Hong
    Li, Runrun
    Li, Shiyou
    JOURNAL OF MATERIALS SCIENCE, 2022, 57 (30) : 14440 - 14449
  • [30] Enhanced electrochemical performance of the cathode material LiNi0.5Mn1.5O4 embedded by CNTs
    Yao, H. B.
    Xie, Y.
    Han, G. J.
    Jia, D. M.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2015, 26 (03) : 1780 - 1783