A linear model for predicting olive yield using root characteristics

被引:2
|
作者
Nasiri, Mohammad Reza [1 ]
Amiri, Ebrahim [1 ]
Behzadi, Jalal [2 ]
Shahinrokhsar, Parisa [3 ]
Roshan, Naser Mohammadian [2 ]
机构
[1] Islamic Azad Univ, Dept Water Engn, Lahijan Branch, Lahijan, Iran
[2] Islamic Azad Univ, Dept Agron & Plant Breeding, Lahijan Branch, Lahijan, Iran
[3] AREEO, Gilan Agr & Nat Resources Res & Educ Ctr, Rasht, Iran
来源
RHIZOSPHERE | 2024年 / 29卷
关键词
Rhizosphere; Root biomass; Root length; Root weight density; Yield prediction model;
D O I
10.1016/j.rhisph.2024.100859
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Predicting yield is an important objective in agricultural research. We developed a linear regression model to predict the olive fruit yield (FY) for four olive cultivars (Sivillano, Conservolia, Zard and Clonavis) by monitoring soil moisture, response to root growth and its characteristics including root weight density (RWD), root length (RL) and root biomass (RB). Our results show the model predicts fruit yield based on a simple linear function of root characteristics (R2 = 0.85). A principal component analysis provided a meaningful combined factor (the first principal component) that showed a clear discrimination in olive fruit yield among four cultivars. The model could be applied to rapidly evaluate olive fruit yield using the measured values of root characteristics and to support decision making for orchard management.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] PREDICTING SLUM HOUSEHOLDS IN INDIA USING GENERALIZED LINEAR MODEL
    Chopra, H. S.
    Singh, Yashbir
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2018, 14 (01): : 85 - 93
  • [22] Fruit yield predicting model of tomato using spectral and hyperspectral indices
    Mukherjee J.
    Sastri C.V.S.
    Journal of the Indian Society of Remote Sensing, 2004, 32 (3) : 301 - 306
  • [23] Predicting Soybean Yield with NDVI Using a Flexible Fourier Transform Model
    Xu, Chang
    Katchova, Ani L.
    JOURNAL OF AGRICULTURAL AND APPLIED ECONOMICS, 2019, 51 (03) : 402 - 416
  • [24] A Bioclimatic Forecasting Model for Olive Yield in Alentejo (Portugal)
    Ribeiro, H.
    Cunha, M.
    Abreu, I.
    VI INTERNATIONAL SYMPOSIUM ON OLIVE GROWING, 2012, 949 : 421 - 426
  • [25] Predicting Table Beet Root Yield with Multispectral UAS Imagery
    Chancia, Robert
    van Aardt, Jan
    Pethybridge, Sarah
    Cross, Daniel
    Henderson, John
    REMOTE SENSING, 2021, 13 (11)
  • [26] Mathematical model for predicting coffee yield
    Miranda, Jose M.
    Reinato, Rosicler A. O.
    da Silva, Adriano B.
    REVISTA BRASILEIRA DE ENGENHARIA AGRICOLA E AMBIENTAL, 2014, 18 (04): : 353 - 361
  • [27] GAUSSIAN SPATIAL LINEAR MODEL OF SOYBEAN YIELD USING BOOTSTRAP METHODS
    Dalposso, Gustavo H.
    Uribe-Opazo, Miguel A.
    Johann, Jerry A.
    Galea, Manuel
    De Bastiani, Fernanda
    ENGENHARIA AGRICOLA, 2018, 38 (01): : 110 - 116
  • [28] Hierarchical crop yield linear model
    Shaik, Saleem
    Bhattacharjee, Sanjoy
    LETTERS IN SPATIAL AND RESOURCE SCIENCE, 2016, 9 (02): : 219 - 231
  • [29] Selection characteristics for predicting yield potential of robusta coffee
    Panyatona, S.
    Nopchinwong, P.
    PROCEEDINGS OF THE INTERNATIONAL WORKSHOP ON TROPICAL AND SUBTROPICAL FRUITS, 2008, 787 : 141 - 146
  • [30] Models for predicting coffee yield from chemical characteristics of soil and leaves using machine learning
    de Oliveira Faria, Rafael
    Filho, Aldir Carpes Marques
    Santana, Lucas Santos
    Martins, Murilo Battistuzzi
    Sobrinho, Renato Lustosa
    Zoz, Tiago
    de Oliveira, Bruno Rodrigues
    Alwasel, Yasmeen A.
    Okla, Mohammad K.
    Abdelgawad, Hamada
    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2024, 104 (09) : 5197 - 5206