A linear model for predicting olive yield using root characteristics

被引:2
|
作者
Nasiri, Mohammad Reza [1 ]
Amiri, Ebrahim [1 ]
Behzadi, Jalal [2 ]
Shahinrokhsar, Parisa [3 ]
Roshan, Naser Mohammadian [2 ]
机构
[1] Islamic Azad Univ, Dept Water Engn, Lahijan Branch, Lahijan, Iran
[2] Islamic Azad Univ, Dept Agron & Plant Breeding, Lahijan Branch, Lahijan, Iran
[3] AREEO, Gilan Agr & Nat Resources Res & Educ Ctr, Rasht, Iran
来源
RHIZOSPHERE | 2024年 / 29卷
关键词
Rhizosphere; Root biomass; Root length; Root weight density; Yield prediction model;
D O I
10.1016/j.rhisph.2024.100859
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Predicting yield is an important objective in agricultural research. We developed a linear regression model to predict the olive fruit yield (FY) for four olive cultivars (Sivillano, Conservolia, Zard and Clonavis) by monitoring soil moisture, response to root growth and its characteristics including root weight density (RWD), root length (RL) and root biomass (RB). Our results show the model predicts fruit yield based on a simple linear function of root characteristics (R2 = 0.85). A principal component analysis provided a meaningful combined factor (the first principal component) that showed a clear discrimination in olive fruit yield among four cultivars. The model could be applied to rapidly evaluate olive fruit yield using the measured values of root characteristics and to support decision making for orchard management.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] A Model for Predicting Log Yield from Stand Characteristics
    Eriksson, Ljusk Ola
    Sallnas, Ola
    SCANDINAVIAN JOURNAL OF FOREST RESEARCH, 1987, 2 (1-4) : 253 - 261
  • [2] Assessment of Olive Tree Canopy Characteristics and Yield Forecast Model Using High Resolution UAV Imagery
    Stateras, Dimitrios
    Kalivas, Dionissios
    AGRICULTURE-BASEL, 2020, 10 (09): : 1 - 13
  • [3] Model for Predicting Maize Crop Yield on Small Farms Using Clusterwise Linear Regression and GRASP
    Moran-Figueroa, German-Homero
    Munoz-Perez, Darwin-Fabian
    Rivera-Ibarra, Jose-Luis
    Cobos-Lozada, Carlos-Alberto
    MATHEMATICS, 2024, 12 (21)
  • [4] Quantitative forecasting of olive yield in Northern Portugal using a bioclimatic model
    Ribeiro, Helena
    Cunha, Mario
    Abreu, Ilda
    AEROBIOLOGIA, 2008, 24 (03) : 141 - 150
  • [5] Quantitative forecasting of olive yield in Northern Portugal using a bioclimatic model
    Helena Ribeiro
    Mário Cunha
    Ilda Abreu
    Aerobiologia, 2008, 24
  • [6] A bioclimatic model for forecasting olive yield
    Ribeiro, H.
    Cunha, M.
    Abreu, I.
    JOURNAL OF AGRICULTURAL SCIENCE, 2009, 147 : 647 - 656
  • [7] A non-linear viscoelastic model for predicting the yield stress of amorphous polymers
    Spathis, G
    Maggana, C
    POLYMER, 1997, 38 (10) : 2371 - 2377
  • [8] Non-linear viscoelastic model for predicting the yield stress of amorphous polymers
    Natl Technical Univ of Athens, Athens, Greece
    Polymer, 10 (2371-2377):
  • [9] Estimating yield of sorghum using root zone water balance model and spectral characteristics of crop in a dryland Alfisol
    Mandal, Uttam Kumar
    Victor, U. S.
    Srivastava, N. N.
    Sharmal, K. L.
    Ramesh, V.
    Vanaja, M.
    Korwar, G. R.
    Ramakrishna, Y. S.
    AGRICULTURAL WATER MANAGEMENT, 2007, 87 (03) : 315 - 327
  • [10] Predicting pork loin chop yield using carcass and loin characteristics
    Wilson, K. B.
    Overholt, M. F.
    Hogan, E. K.
    Schwab, C.
    Shull, C. M.
    Ellis, M.
    Grohmann, N. S.
    Dilger, A. C.
    Boler, D. D.
    JOURNAL OF ANIMAL SCIENCE, 2016, 94 (11) : 4903 - 4910