Integrating single-cell imaging and RNA sequencing datasets links differentiation and morphogenetic dynamics of human pancreatic endocrine progenitors

被引:1
|
作者
Beydag-Tasoez, Belin Selcen [1 ,2 ]
D'Costa, Joyson Verner [2 ]
Hersemann, Lena [2 ]
Lee, Byung Ho [2 ]
Luppino, Federica [2 ,3 ]
Kim, Yung Hae [1 ,2 ]
Zechner, Christoph [2 ,3 ,4 ]
Grapin-Botton, Anne [1 ,2 ,3 ,4 ,5 ]
机构
[1] Novo Nord Fdn Ctr Stem Cell Biol, DK-2200 Copenhagen, Denmark
[2] Max Planck Inst Mol Cell Biol & Genet, D-01307 Dresden, Germany
[3] Ctr Syst Biol Dresden, D-01307 Dresden, Germany
[4] Tech Univ Dresden, Cluster Excellence Phys Life, D-01062 Dresden, Germany
[5] Univ Clin Carl Gustav Carus Tech Univ Dresden, Helmholtz Zentrum Munchen, Paul Langerhans Inst Dresden, Neuherberg, Germany
关键词
IN-VITRO; NEUROGENIN3; EXPRESSION; REVEALS; PHOSPHORYLATION; GENERATION; CYCLE; READS; MOUSE; FATE;
D O I
10.1016/j.devcel.2023.07.019
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Basic helix-loop-helix genes, particularly proneural genes, are well-described triggers of cell differentiation, yet information on their dynamics is limited, notably in human development. Here, we focus on Neurogenin 3 (NEUROG3), which is crucial for pancreatic endocrine lineage initiation. By monitoring both NEUROG3 gene expression and protein in single cells using a knockin dual reporter in 2D and 3D models of human pancreas development, we show an approximately 2-fold slower expression of human NEUROG3 than that of the mouse. We observe heterogeneous peak levels of NEUROG3 expression and reveal through long-term live imaging that both low and high NEUROG3 peak levels can trigger differentiation into hormone-expressing cells. Based on fluorescence intensity, we statistically integrate single-cell transcriptome with dynamic behaviors of live cells and propose a data-mapping methodology applicable to other contexts. Using this methodology, we identify a role for KLK12 in motility at the onset of NEUROG3 expression.
引用
收藏
页码:2292 / +
页数:24
相关论文
共 50 条
  • [21] TWO TYPES OF HUMAN PANCREATIC ACINAR CELLS DEFINED BY SINGLE-CELL RNA SEQUENCING
    Blobner, Brandon M.
    Saloman, Jami
    Shelton, Celeste
    Lafyatis, Robert
    Wijkstrom, Martin
    Zureikat, Amer H.
    Singhi, Aatur
    Bottino, Rita
    Brand, Randall
    Whitcomb, David C.
    GASTROENTEROLOGY, 2020, 158 (06) : S199 - S200
  • [22] Exploring human pancreatic organoid modelling through single-cell RNA sequencing analysis
    Cherubini, Alessandro
    Rusconi, Francesco
    Piras, Roberta
    Waechtershaeuser, Kaja Nicole
    Dossena, Marta
    Barilani, Mario
    Mei, Cecilia
    Hof, Lotta
    Sordi, Valeria
    Pampaloni, Francesco
    Dolo, Vincenza
    Piemonti, Lorenzo
    Lazzari, Lorenza
    COMMUNICATIONS BIOLOGY, 2024, 7 (01)
  • [23] Dynamic Evolution of Fibroblasts Revealed by Single-Cell RNA Sequencing of Human Pancreatic Cancer
    Dimitrieva, Slavica
    Harrison, Jon M.
    Chang, Jonathan
    Piquet, Michelle
    Mino-Kenudson, Mari
    Gabriel, Millicent
    Sagar, Vivek
    Horn, Heiko
    Lage, Kasper
    Kim, Julie
    Li, Gang
    Weng, Shaobu
    Harris, Cynthia
    Kulkarni, Anupriya S.
    Ting, David T.
    Qadan, Motaz
    Fagenholz, Peter J.
    Ferrone, Cristina R.
    Grauel, Angelo L.
    Laszewski, Tyler
    Raza, Alina
    Riester, Markus
    Somerville, Tim
    Wagner, Joel P.
    Dranoff, Glenn
    Engelman, Jeffrey A.
    Kauffmann, Audrey
    Leary, Rebecca
    Warshaw, Andrew L.
    Lillemoe, Keith D.
    Fernandez-del Castillo, Carlos
    Ruddy, David A.
    Liss, Andrew S.
    Cremasco, Viviana
    CANCER RESEARCH COMMUNICATIONS, 2024, 4 (12): : 3049 - 3066
  • [24] Studying RNA dynamics from single-cell RNA sequencing snapshots
    Carilli, Maria
    Pachter, Lior
    NATURE METHODS, 2024, 21 (08) : 1418 - 1419
  • [25] Dissecting human gliomas by single-cell RNA sequencing
    Tirosh, Itay
    Suva, Mario L.
    NEURO-ONCOLOGY, 2018, 20 (01) : 37 - 43
  • [26] Single-Cell RNA Sequencing for Studying Human Cancers
    Aran, Dvir
    ANNUAL REVIEW OF BIOMEDICAL DATA SCIENCE, 2023, 6 : 1 - 22
  • [27] schex avoids overplotting for large single-cell RNA-sequencing datasets
    Freytag, Saskia
    Lister, Ryan
    BIOINFORMATICS, 2020, 36 (07) : 2291 - 2292
  • [28] Identification of a Recurrence Gene Signature for Ovarian Cancer Prognosis by Integrating Single-Cell RNA Sequencing and Bulk Expression Datasets
    Zhang, Yongjian
    Huang, Wei
    Chen, Dejia
    Zhao, Yue
    Sun, Fusheng
    Wang, Zhiqiang
    Lou, Ge
    FRONTIERS IN GENETICS, 2022, 13
  • [29] Single-Cell RNA Sequencing: A New Window into Cell Scale Dynamics
    Dasgupta, Sabyasachi
    Bader, Gary D.
    Goyal, Sidhartha
    BIOPHYSICAL JOURNAL, 2018, 115 (03) : 429 - 435
  • [30] Elucidating the cellular dynamics of the brain with single-cell RNA sequencing
    Cardona-Alberich, Aida
    Tourbez, Manon
    Pearce, Sarah F.
    Sibley, Christopher R.
    RNA BIOLOGY, 2021, 18 (07) : 1063 - 1084